An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel

Charles J. Mueller and Glen C. Martin* Sandia National Laboratories *Currently employed by Caterpillar Inc.

André L. Boehman Pennsylvania State University

Research Supported by

US DOE Office of Vehicle Technologies Program Manager: Kevin Stork

Directions in Engine-efficiency and Emissions Research (DEER) Conference Detroit Marriott at the Renaissance Center, Detroit, Michigan September 30, 2010

Motivation

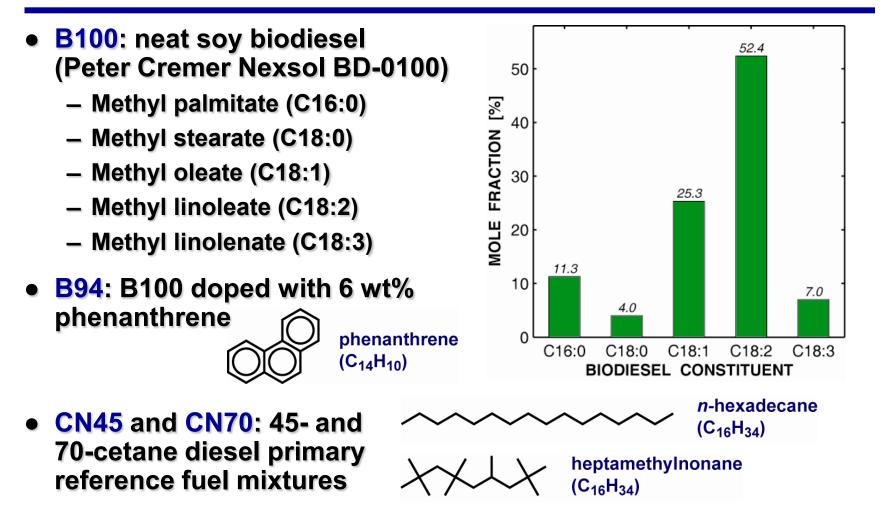
- NO_x increase is barrier to full biodiesel market penetration in US

 California and Texas prohibit NO_x-increasing fuels/additives
- Previous work has shown NO_x increase can originate from
 - Combustion effects
 - Engine-calibration effects (see SAE 2008-01-0078)
- Combustion effects not well understood (many hypotheses)

Identification of underlying cause(s) of biodiesel NO_x increase is a key step in developing successful mitigation strategies

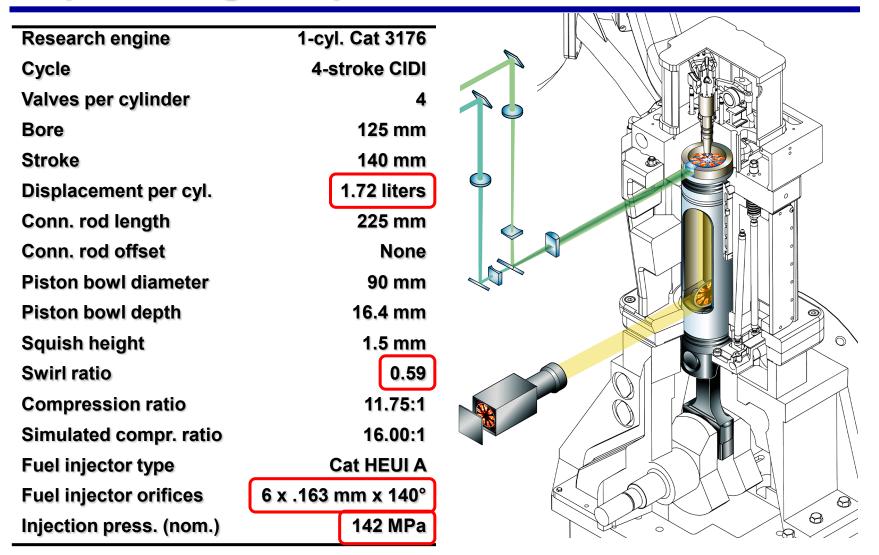
Understand combustion mechanism(s) underlying the biodiesel NO_x increase

- Determine magnitude of NO_x increase under conventional and emerging operating modes
- Evaluate validity of primary hypotheses
- Give insights into origins of NO_x increase that are relevant for all fuels


Hypotheses for Biodiesel NO_x Increase

Most hypotheses are based on increased thermal-NO_x formation

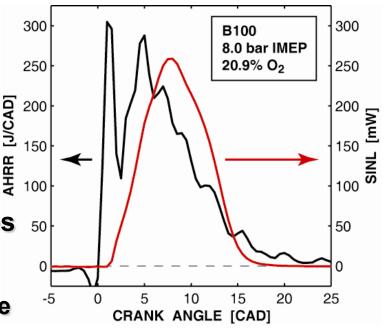
Increased in-cylinder temperature and/or residence time at high temperature will increase thermal NO_x


- 1. Increased fraction of premixed combustion
- 2. Increased peak bulk-gas-averaged temperature
- 3. Higher adiabatic flame temperature
- 4. Higher actual flame temperature \leftarrow lower radiative heat loss
- 5. Faster combustion
- 6. Autoigniting/reacting mixtures closer to stoichiometric
- Other hypotheses focus on increased prompt-NO_x formation
 - Not investigated in this work

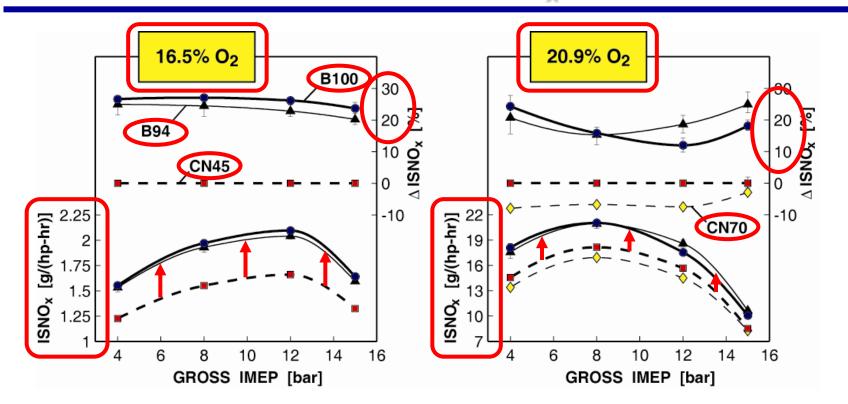
Fuels

Ign. delay, start of combustion matched for B100, B94, and CN45

Optical Engine Specifications and Schematic

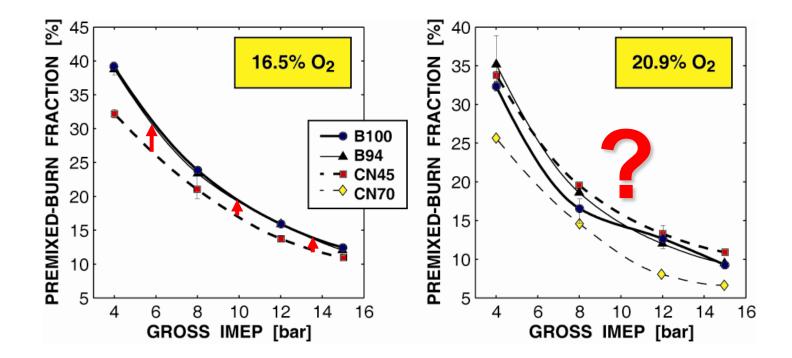

Operating Conditions

Engine speed	800 rpm (steady-state)		
Engine loads	4.0, 8.0, 12.0, 15.0 bar IMEP		
Start of injection	-2.2 to -1.0° ATDC		
Start of combustion	-0.1 to +	-0.1 to +0.5° ATDC	
Intake-O ₂ mole fractions	20.9%	16.5%	
Motored TDC temperature	910 K	850 K	
Motored TDC pressure	63 bar	77 bar	
Motored TDC density	24 kg/m³	32 kg/m ³	

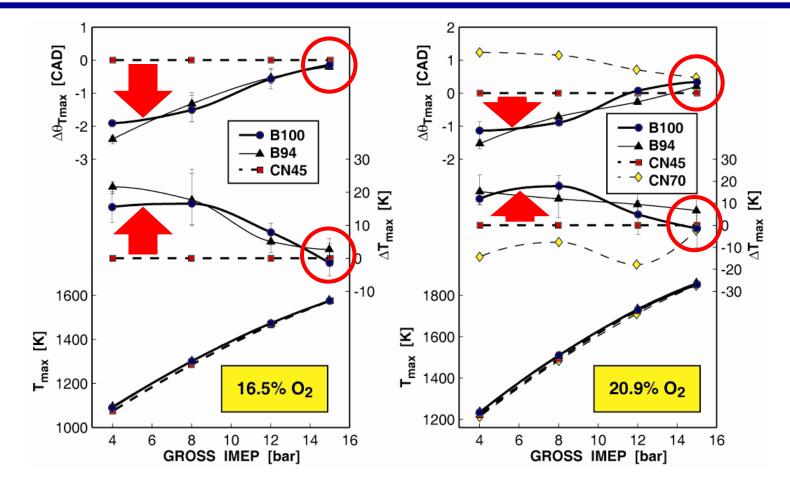

- Simulated exhaust gas recirculation (EGR):
 - N₂ and CO₂ added to intake air to match O₂ mole fraction and specific heat at TDC of in-cylinder mixture with real EGR

Diagnostics

- Cylinder pressure \rightarrow
 - Apparent heat-release rate (AHRR)
 - Start of combustion
 - Combustion phasing
- Spatially integrated natural luminosity (SINL) → measure of radiative heat loss from in-cylinder gases
- Engine-out emissions
 - NO_x using heated chemiluminescence detector (CAI Model 600 HCLD)
 - Smoke using smokemeter (AVL Model 415S)
- Chemiluminescence imaging (310 nm) \rightarrow flame lift-off length
- Mie-scattered light imaging (532 nm) \rightarrow actual start of injection
- Average mass of fuel per injection → indicated efficiency

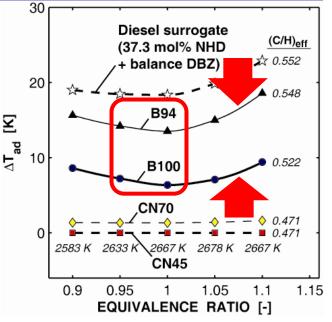


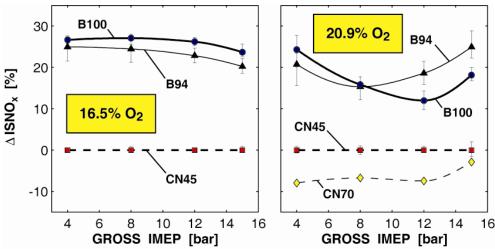
Results: EGR and Load Effects on NO_x Emissions


- EGR lowers ISNO_x, biodiesel fuels (BDFs) exhibit highest ISNO_x
- Load-averaged B100 ISNO_x increase is larger with EGR addition
 26% ISNO_x↑ with moderate EGR vs. 18% ISNO_x↑ without EGR

Premixed-Burn Fraction Cannot Explain Biodiesel NO_x 7 at 20.9%-O₂ Condition

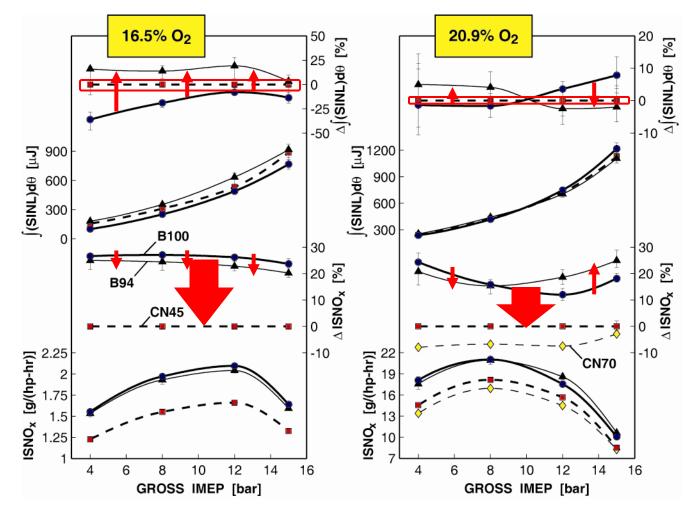
- Solid lines = BDFs, dashed lines = hydrocarbon fuels
- BDFs have consistently larger premixed-burn fractions at 16.5% O₂, but correlation breaks down at 20.9% O₂


Peak Bulk-Gas-Averaged Temperature (T_{max}) Cannot Explain Biodiesel NO_x \uparrow at High Load

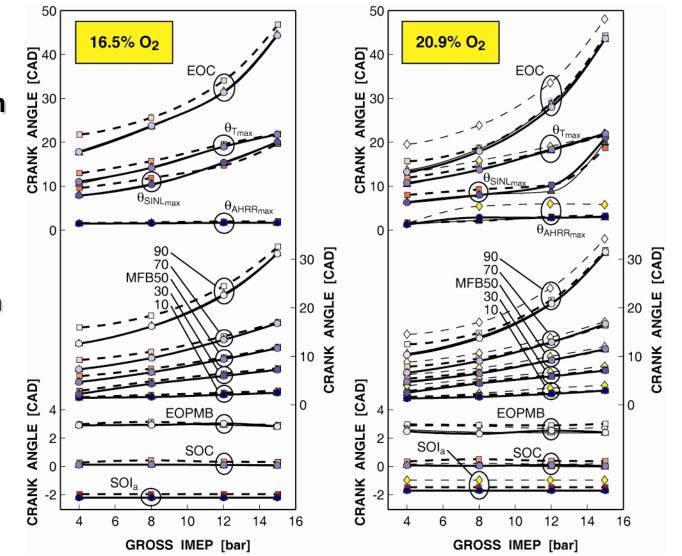


- T_{max} generally is larger and occurs earlier for BDFs
- T_{max} differences disappear at highest loads

Fuel Effects on Adiabatic Flame Temp. (T_{ad}) Cannot Fully Explain Biodiesel NO_x \uparrow


- T_{ad} values are:
 - Lower for BDFs than for diesel-like fuel
 - Higher for BDFs than for CNxx
- If T_{ad} differences were the controlling factor for NO_x, then
 - BDFs would have lower NO_x than conventional diesel
 - B94 would always have significantly higher NO_x than B100
 - CN70 would have higher NO_x than CN45

Radiative Heat Transfer Likely Important, but Cannot Fully Explain Biodiesel NO_x ?


- Changes in integrated SINL correlate with NO_x changes for B100 and B94
- CN45 doesn't show same trend

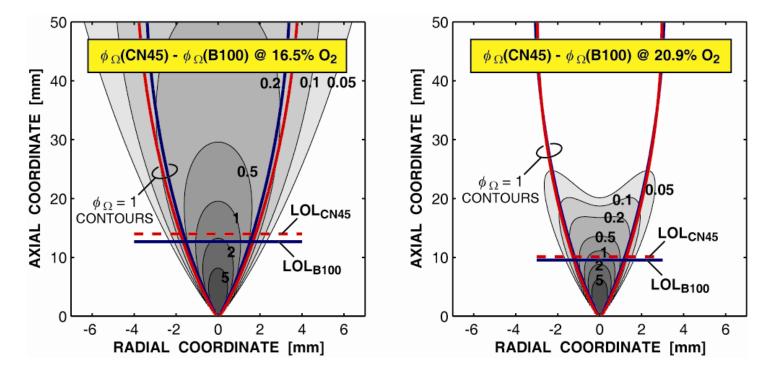
Combustion Phasing Effects Are Correlated with Biodiesel NO_x ?

- Solid lines

 BDFs,
 dashed lines
 hydrocarbon
 fuels
- Combustion occurs more quickly for BDFs
 - Even though injection durations are longer at constant load

Summary of Understanding to This Point

- NO_x increase for B100 relative to CN45 is 18% without EGR, 26% at moderate-EGR conditions
- None of the following effects are perfectly correlated with observed NO_x changes (but any/all could play roles)
 - Premixed-burn fraction
 - Peak bulk-gas-averaged in-cylinder temperature
 - Adiabatic flame temperature
 - Radiative heat transfer
- B100 and B94 exhibit faster combustion
 - Longer residence time at high temperature \rightarrow higher NO_x
 - What causes the faster combustion?
- Still don't really understand origin of the biodiesel NO_x increase!
 - What about mixture-stoichiometry effects?

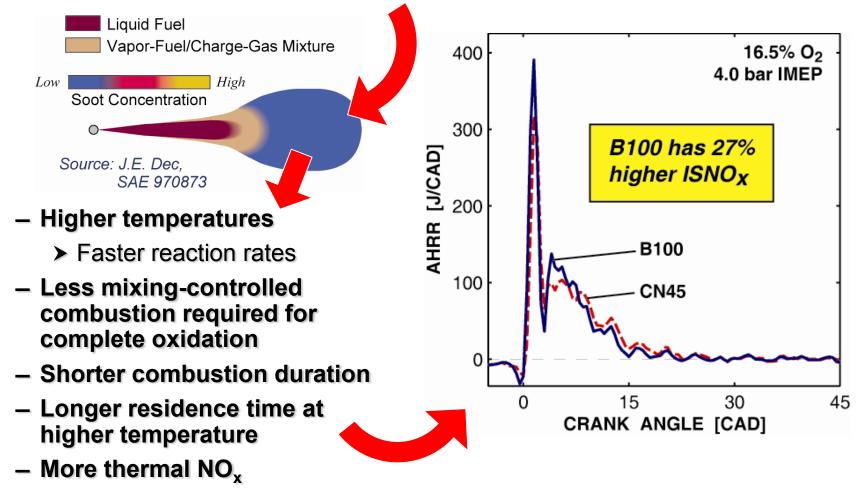

Mixtures That Are Closer to Stoichiometric Yield Higher Product Temperatures

• Mixture stoichiometry 2800 quantified using oxygen equivalence ratio, ϕ_0 FUEL-**FUEL-RICH** 2600 LEAN **MIXTURES** - See SAE 2005-01-3705 2400 • Relatively small ϕ_{0} changes (~0.5) can Σ 2200 **STOICHIOMETRIC** lead to large differences (100-400 K) ad 2000 in product-mixture temperature **CN45** 1800 1600 **B100** 1400 2 3 n

OXYGEN EQUIV. RATIO, ϕ_{O} [-]

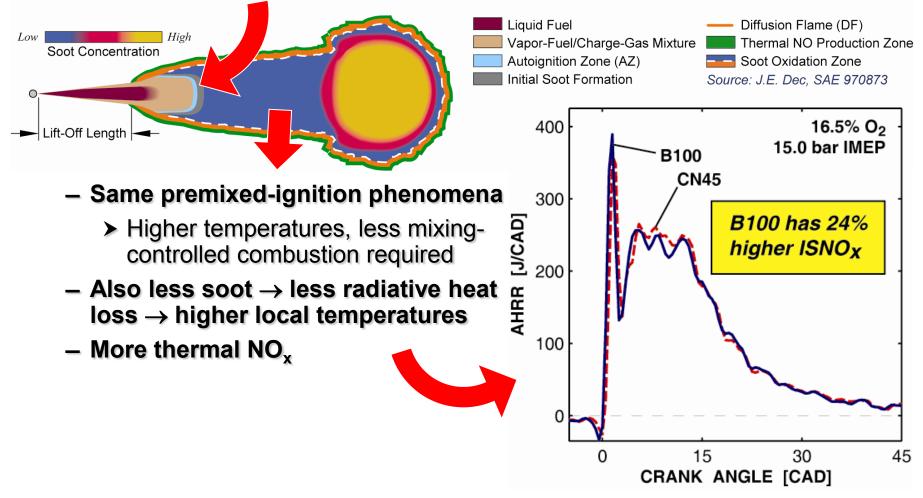
Biodiesel Mixtures Are Closer to Stoichiometric over Broad Regions

• ϕ_{Ω} fields estimated using mixing model (SAE 1999-01-0528) and validated radial mixture distribution (*IJER* **7**:103, 2006)



• ϕ_{Ω} closer to stoichiometric for B100 (and B94) than for CN45 – Throughout jet at ignition and at the lift-off length (LOL)

Conclusions


Under Premixed-Ignition Conditions, the Biodiesel NO_x Increase is Caused by...

Reacting mixtures closer to stoichiometric during ignition

Under Higher-Load Conditions the Biodiesel NO_x Increase is Caused by...

• Reacting mixtures closer to stoichiometric in the standing premixed autoignition zone (AZ) near the lift-off length

Final Notes

- Primary factor in biodiesel NO_x increase appears to be igniting/ reacting mixtures that are closer to stoichiometric
 - Consequences are: larger premixed burn, higher temperatures, faster combustion, less radiative heat loss \rightarrow more thermal NO_x

See SAE 2009-01-1792 for details

- Preceding conceptual understanding is consistent with trends observed in current work and in literature, but remains to be rigorously validated
- Optimizing an engine for biodiesel use is likely to provide benefits relative to an engine optimized for diesel
 - Some fraction of biodiesel PM, HC, and CO benefits can be traded off to eliminate NO_x increase (e.g., by adding EGR) and raise efficiency (e.g., by decreasing DPF regeneration frequency)

Caterpillar Inc.: Chris Gehrke – hardware support, helpful discussions Jason Kempenaar – assistance with data acquisition Mark Musculus, Lyle Pickett – *helpful* discussions and codes for T_{ad} calc's Brian Fisher – post-doc