"New Developments in Titania-Based Catalysts for Selective Catalytic Reduction of NOx"

Cristal Global

D. M. Chapman, S. M. Augustine, C. Lehaut-Burnouf

2010 DEER Conference Detroit, Michigan September 29, 2010

Contact: david.chapman@cristalglobal.com

Mobile SCR Catalyst Snapshot

- Titania/Vanadia SCR catalysts were selected for Euro IV and V
 - Up to 900 000 vehicles are equipped*
- Zeolite catalysts were selected for on-road US 2010
 - Euro VI catalysts in development

9000000

800000

400000

300000

100000

- New developments in titania-based catalysts announced
 - 2010 SAE, CTI, DEC Conferences
 - Titania/vanadia and Titania/vanadia-free systems

The proper streng stren

DEER 2010: Performance refinements

* European SCR fleet registrations, 2009 Integer estimate

New Titania Technology

- Basis for new catalyst is improved hydrothermal stability
 - Titania crystal chemistry and porosity (surface area) stability depend on:
 - Additive composition and microstructure
- Supports with improved stability then optimized for catalytic activity

	Composition, wt%		
Material	TiO ₂	SiO ₂	WO ₃
Std. Euro 4/5	90	0	10
Imp. Euro 4/5	81	10	9
Fe-beta zeolite			
New Ti/V-free	>80		
New Ti/V	90	4	6
New Ti/V Exp.	88	8	4

Stability of New Titania Materials

Ti/V Catalysts with 2 wt% vanadia

Stability of Vanadia on New Materials

Volatile V at 750°C, 5% H₂O; 2 wt% V₂O₅

- Vanadia is strongly stabilized on titania
- Vanadia is further stabilized on new materials

New-Ti/V Performance: Activity

- Tests at Paul Scherrer Institute on wash-coated cordierite parts
- Standard SCR Reaction; 10 ppm NH₃ slip

New Ti/V has improved activity profile after hydrothermal aging.

New Ti/V Refinements- Low t Activity

• Powder tests at $NH_3/NO = 0.5$

NO Conversion at 200C α = 0.5, SV ~200,000 hr⁻¹

New Ti/V* low temperature activity can be improved

New Ti/V Refinements- Activity + Stability

- ❖ Powder mixture tests at NH₃/NO = 1.0
- Representative formulations

❖ New Ti/V* stability can be maintained

Evaluation of New Ti/V-Free- Activity

Tests at Paul Scherrer Institute on wash-coated cordierite parts (including binder)

New Ti/V-Free shows high ammonia slip vs. Fe-beta zeolite

New Ti/V-Free Refinements: NH₃ Slip

❖ Powder tests, varying NH₃/NO

NH₃ Slip at 300C 1000 ppm NO; SV~ 50,000 hr⁻¹

New Ti/V-Free ammonia slip can be improved

New Ti/V-Free Refinements- Activity

❖ Powder tests, varying NH₃/NO

NOx Conversion at 300C vs NH₃ 1000 ppm NO; SV \sim 50,000 hr⁻¹

New Ti/V-Free fresh activity comparable to Fe-zeolite

New Ti/V-Free Refinements- Formulation

Mixed powders with 10% "Binder"

Formulation affects fresh and aged activity

Conclusions

System	Key Results		
TiO ₂ Substrate	Can be stabilized in a controlled fashion via a new synthetic approach		
New Ti/V	First prototype designed for optimum aged activity		
	Supported phases (vanadia) can be stabilized		
	Low temperature activity can be improved to match best in class catalyst		
	System can be designed with necessary stability for full aged activity		
New Ti/V-Free	First prototype comparable to Fe-beta zeolite, but with high ammonia slip		
	Ammonia slip can be reduced to match reference		
	System can be designed for optimum fresh and aged activity		
Catalyst + Binder	Performance of formulated system depends on interactions between components		

Thank-you!