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INTRODUCTION AND BACKGROUND

e LTC engines have demonstrated low emissions and
high efficiencies

e These engines use combinations of high CR, high
EGR, lean mixtures, fast burn rates, high boost and
other features

e What is the contribution to the high efficiencies by
each of these features?

e What are the best combinations of these features?

e Does including LHR concepts make sense?
Why or why not?

e What does the second law say?

e What is the impact on nitric oxide emissions?




THERMODYNAMIC ENGINE CYCLE SIMULATION

INTAKE

Features/Considerations:

1. One common pressure

2. Three gas temperatures

3. Three volumes and masses
4. Separate heat transfer




PROCEDURES FOR SOLUTIONS

« ORDINARY DIFFERENTIAL EQUATIONS

* NUMERICAL TECHNIQUES: EULERS

* INITIAL CONDITIONS: T,, p,, Residual Fraction
« BOUNDARY CONDITIONS: INLET & EXHAUST
« SPECIFY SUBMODEL PARAMETERS:

Thermodynamic properties
Heat transfer coefficient
Fuel mass rates

Flow rate parameters
Nitric oxide kinetics

Other




SPECIFICATIONS FOR THE ENGINE

PARAMETER
Engine
Bore/Stroke
Displacement
bmep
Engine speed
Combustion timing
Geometric compression ratio
Valve arrangement

Automotive, V-8
102/88 mm (4.0/3.5 in)
5.7 liter (350 in3)

900 kPa

2000 rpm

MBT

from 8:1 to 20:1

OHYV, 2 valves/cylinder




DESCRIPTION OF CASES
-- STRATEGY -
Add features in a sequential fashion:

DESCRIPTION
CR=8; BD =60° ¢=1.0; EGR=0%; T, =450 K
CR =20; BD =60° ¢=1.0; EGR=0%; T,=450 K
CR =20; BD =30° ¢=1.0; EGR=0%; T,=450 K
CR — 20; BD — 30°;, ¢~ 0.7; EGR — 0%; T,,~ 450 K
CR =20; BD = 30°; ¢=0.7; EGR = 50%; T, =450 K
CR =20; BD = 30°; ¢=0.7; EGR = 50%; T,,= 550 K




RESULTS

= Thermal Efficiencies

» Cylinder Conditions

» Heat Transfer/Exhaust Energy
= Parameter Optimization
= Nitric Oxides

* Low Heat Rejection (LHR)




RESULTS

= Thermal Efficiencies
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THERMAL EFFICIENCIES

» High compression ratio
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» High compression ratio
» Short burn duration
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» Lean mixture
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THERMAL EFFICIENCIES
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COMPARISON TO THE LITERATURE

(Kokjohn et al.) (Case 6)
Bore/Stroke (mm) 137/165 102/88
Fuels Gasoline/Diesel Isooctane
Inlet Pressure (kPa) 200 227
Geometric CR 16.1 20
EGR (%) 45.5 50
Equivalence Ratio 0.77 0.7
Speed (rpm) 1300
RESULTS:
IMEP 1 (kPa) 1100
Net Ind Efficiency (%) 50
Peak Pressure (MPa) 12
Nitric Oxide (g/kW-h)




RESULTS

= Cylinder Conditions




CYLINDER PRESSURES
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CYLINDER TEMPERATURES
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RESULTS

» Heat Transfer/Exhaust Energy




HEAT TRANSFER AND EXHAUST ENERGY
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Average “gamma” for Expansion Stroke

bmep =900 kPa
2000 rpm
MBT Timing

Net Indicated Efficiency (%)

Note: from simple “Otto”
cycle considerations —

a “0.01” increase of gamma
results i about a 1%
efficiency gain

This implies that about one-
half to two thirds of the
efficiency increases are due
to the increase of gamma.




RESULTS

= Parameter Optimization




EFFECTS OF COMPRESSION RATIO
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EFFECTS OF BURN DURATION
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EFFECTS OF EGR
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RESULTS

= Nitric Oxides




NITRIC OXIDES FOR EACH CASE
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RESULTS

* Low Heat Rejection (LHR)




LOW HEAT REJECTION (LHR)
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LOW HEAT REJECTION (LHR)
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Other Conditions

e Other operating conditions exhibit
similar improvements

e For different “order” of features —
same final result, but incremental
gains slightly different

e For reduced heat transfer without
higher wall temperatures, even higher
gains are possible




CONCLUSIONS (1/2)

* High CR, high EGR, lean mixtures and other
features can combine to yield ~50% net indicated
thermal efficiency

» Features of most importance: CR, EGR, lean
mixtures

* The major reasons for the higher efficiencies
include the lower heat transfer, the higher “gamma,”
and the high CR

* To maintain load, higher cylinder pressures result
and the associated mechanical friction increases




CONCLUSIONS (2/2)

* The lower exhaust gas energy may cause the
application of turbochargers to be problematic

* Low heat rejection (LHR) concepts are more
compatible with LTC engines than with conventional
engines

= Predicted nitric oxides are “zero” for the LTC modes

= Exergy destruction during combustion increases
largely due to the lower temperatures — this is an
acceptable trade-off for the higher efficiencies









