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LNT behavior comprised of three main 
steps: oxidation, storage, and reduction
•

 

Modeling efforts must capture the 
independent reaction steps

•

 

Aging effects these steps…differently

•

 

Optimizing injection strategies relies on 
understanding the state of LNT as a 
function of age
–

 

If LNT optimized for end of life 
performance near term fuel 
penalties will be higher than 
necessary

–

 

If LNT optimized for fresh 
performance, will fail emissions 
during use
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Thermally-aged catalysts generated 
using bench-generated exotherms

•

 

Effort began as a Rapid Aging 
Protocol development project

•

 

Temperatures studied
–

 

700, 800, 900, 1000°C
–

 

Up to 350 thermal cycles

•

 

Study generated LNTs

 

with wide 
range of aging properties
–

 

Pt-Pd-Rh/Ba/γ-Al2

 

O3 plus 
other additives 

–

 

Umicore

 

samples 
(formerly Delphi)
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Thermal aging has clear effect on 
material properties

•

 

Pt group metals (PGM) increase in size
–

 

therefore, surface metal decreases
•

 

Phase changes as depicted by XRD
–

 

Ba-phase appears to be dispersing 
•

 

Total surface area of support + storage 
material decreases
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Thermal aging affects the chemical 
reactions of an LNT differently

•

 

Overall performance decreases with 
aging

•

 

However, not all LNT functionality 
decreases

•

 

What materials effects change the 
functionality?
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Effects of Aging on LNT functionality:
 

NO Oxidation
 

NOx

 

Storage
 

NOx

 

Reduction
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•

 

NO oxidation measured 
after measuring total NOx 
storage capacity 

•

 

NO oxidation at 200 and 
300°C decreases with 
aging temperature

•

 

Approximately constant at 
400°C
–

 

Equilibrium limited

Overall NO oxidation rate decreases
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•

 

Ten-fold increase in average PGM 
size after aging at 1000°C

•

 

NO conversion per

 

PGMs

 

increases at 
all evaluation temperatures 
–

 

0.02 to 0.2 s-1

 

at 400°C
–

 

mol NO/mol PGMs

 

/s  s-1

 

(TOF)
–

 

TOF : turnover frequency

•

 

Qualitatively illustrated by Olsson et 
al. 
–

 

L. Olsson, E. Fridell, Journal of 
Catalysis 210 (2002) 340. 

Although NO oxidation decreases, the 
effectiveness of the PGM increases

0
5

10
15
20
25
30

Fresh 754°C 883°C 929°C 1070°C
Aging Temperature

PG
M

 S
iz

e 
(n

m
)

0.00

0.05

0.10

0.15

0.20

0.25

200°C 300°C 400°C

Tu
rn

ov
er

 F
re

qu
en

cy
 (s

-1
) Fresh

754°C
883°C
929°C
1070°C



9 Managed by UT-Battelle
for the U.S. Department of Energy

0

20

40

60

80

100

120

140

160

180

Fresh 754ºC 883ºC 929ºC 1070ºC
Aging Condition

NO
 S

to
ra

ge
 (u

m
ol

/g
ca

t)

200ºC

300ºC

400ºC•

 

Maximum NOx

 

storage capacity at 
300°C

•

 

Storage decreases per gram of 
catalyst at higher aging temperatures

NOx storage capacity effects
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•

 

Different effects when normalized to 
LNT surface area
–

 

~Steady at 200°C
–

 

Decreases at 300°C
–

 

Moderate increase at 400°C
•

 

Why???
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; ~25% by peak area 
•

 

Aging to 900°C reduces Al2
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peak height/area 
–
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•

 

Ba nitrates not as affected by aging
–

 

Ba could be re-dispersing and covering  γ-Al2

 

O3
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Ratio of peak heights illustrates 
decrease in Al2

 

O3

 

nitrates

•

 

Peak height ratios of Al2

 

O3

 

nitrate and Ba(NO3

 

)2

 

peaks 
–

 

1550 and 1430 cm-1, respectively
•

 

Decrease in peak ratio above 900°C 
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XRD and DRIFTS results suggest Ba 
dispersion occurring on aged samples

•

 

200 and 300°C
–

 

Reductions in NOx

 

storage when 
aging at T > 900°C largely due to 
loss of Al2

 

O3

 

nitrates
•

 

Possible Ba dispersion
–

 

Ba-nitrates much less affected 
by aging 
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•

 

Evidence of this previously 
reported on model catalyst 
systems
–

 

Peden et al. CLEERS 
Workshop #9, 2005
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•

 

No formation of nitrates on Al2

 

O3
•

 

LNT is saturated after 30 min of NO 
exposure

•

 

400°C
–

 

Storage affected only by Ba sites 
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•

 

Storage Phase (60 seconds)
–

 

NOx

 

slip increases with 
aging temperature and 
number of aging cycles
•

 

Capacity decreases 
•

 

Reduction Phase (5 seconds)
–

 

NOx

 

“puff”

 

decreases with 
increasing # of aging cycles
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•

 

Fresh sample desorbs nitrates below 400°C
•

 

Aging increases stability of nitrates by ~ 50°C
–

 

Suggests Ba redispersion influences Ba-nitrate stability
–

 

Possible Ba-support interaction

Nitrates more stable after aging
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Stable nitrates would also release slower 
under rich conditions

•

 

The higher the nitrate stability the slower the release of NOx and the more 
likely that it will react with reductants
–

 

Leading to smaller NOx

 

puff
•

 

Depiction of release scenarios and their impact on selectivity:

Fast NO2
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at Pt surface…NO2

 

released in exhaust
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•
 

Thermal aging of LNT has numerous material and chemical 
effects
–

 
Generally, all reaction rates decrease on a mass basis

–
 

Efficiency of catalysts improve for some steps

•
 

Aging results in improved nitrate stability  
–

 
Effects performance and NH3

 

formation

•
 

Evidence of Ba re-dispersion observed after thermal aging
–

 
Al2

 

O3

 

contribution to NOx storage and reduction minimized

Conclusions
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ADDITIONAL SLIDES
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Experimental Apparatus

Micro-Reactor Bench-Reactor

DRIFTS STEM/EDS
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Thermal-Aging with Exotherm in a Furnace

•

 

Low Temperature Ba-only LNT (fully-formulated)
•

 

The center of the catalyst reaches a nominal aging temperature of ~900oC
•

 

The front section of the catalyst experiences higher aging temperature
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DRIFTS Experimental Setup

•

 

NOx

 

Storage
–

 

Pretreatment at 500°C in 1% H2

 

, Ar bal. for 30 min
–

 

Take background scan in 10% O2

 

, and Ar bal. at 
storage temperature

–

 

Store NOx

 

with 300 ppm NO, 10% O2

 

, Ar bal.

•

 

NOx

 

TPDs
–

 

Pretreatment at 500°C in 1% H2

 

, Ar bal. for 30 min 
–

 

Take background scans while cooling from 500 to 
200°C in 10% O2
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–
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DRIFTS Peak Assignments

•

 

1220 cm-1

 

–

 

Ba(NO2

 

)2

–

 

D. H. Kim, J. H. Kwak, J. Szanyi, S. D. Burton, C. H.F. Peden, Appl. Catal. B: Environ. 72 (2007) 233.
–

 

J. Yaying, T. J. Toops, J. A. Pihl, M. Crocker, Submitted to Applied Catal. B. 

•

 

1430 and 1320 cm-1

 

– Ba(NO3

 

)2

–

 

Z. Liu, J. A. Anderson, J. Catal. 224 (2004) 18. 
–

 

F. Prinetto, G. Ghiotti, I. Nova, L. Lietti, E. Tronconi, P. Forzatti, J. Phys. Chem. 105 (2001) 12732. 
–

 

J. Yaying, T. J. Toops, J. A. Pihl, M. Crocker, Submitted to Applied Catal. B. 
–

 

Ch. Sedlmair, K. Seshan, A. Jentys, J. A. Lercher, J. Catal. 214

 

(2003) 308. 

•

 

1550, 1465, 1412, and 1250 cm-1

 

–

 

γ-Al2

 

O3

 

- NO3

–

 

Z. Liu, J. A. Anderson, J. Catal. 224 (2004) 18. 
–

 

T. J. Toops, D. B. Smith, W. P. Partridge, Appl. Catal. B: Environ. 58 (2005) 245.
–

 

J. Yaying, T. J. Toops, J. A. Pihl, M. Crocker, Submitted to Applied Catal. B. 
–

 

A. L. Goodman, T. M. Miller, V. H. Grassian, J. Vac. Sci. Technol. A 16 (1998) 2585. 
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•

 

Spectra at 200 and 300°C are similar
–

 

Large portion of nitrates stored on γ-Al2

 

O3

 

; approximately 25% by peak 
area

–

 

Ba nitrites form first, but peak is less intense at 300°C
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•

 

Reduction in γ-Al2

 

O3

 

peak height/area corresponds to reduction in γ-Al2

 

O3
surface area or Ba redispersion over γ-Al2

 

O3
•

 

Ba sites appear not to be as affected by aging
–

 

Consistent with 200°C NOx

 

storage
–

 

Ba could be redispersing and covering  γ-Al2

 

O3
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Further Reduction in Al2

 

O3

 

Nitrates After 1000°C Aging
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•

 

Almost complete loss of γ-Al2

 

O3

 

NOx

 

storage sites
•

 

Ba sites appear not to be as affected by aging
–

 

Ba(NO3

 

)2

 

peak at 1430 cm-1

 

is now clearly visible
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Effect of Aging on Al2
 

O3

 

Nitrates Not 
Seen at 700 or 800°C

200°C 300°C

•

 

Maximum peak height ratios of Al2

 

O3

 

nitrate and Ba(NO3

 

)2

 

peaks at 1550 and 1430 cm-1, 
respectively

•

 

Decrease in peak ratio begins when aging above 880°C
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No evidence of formation of other Ba 
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conversion
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Formation

•

 

Switching exp’s with H2

 

O and CO2

 

show similar trends to SS NOx

 

adsorption
–

 

Al2

 

O3

 

nitrates are most affected by aging
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that is released is reduced more efficiently after aging 
•

 

This is observed even though the PGM surface is decreasing
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A pseudo turnover frequency (TOF) illustrates this relationship
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