Characteristics and Effects of Lubricant Additive Chemistry and Exhaust Conditions on Diesel Particulate Filter Service Life and Vehicle Fuel Economy

August 5, 2009

Alexander Sappok, Victor W. Wong, Maureen Murage

Massachusetts Institute of Technology
Sloan Automotive Laboratory
Cambridge, MA
Ash Impacts Diesel Particulate Filter Performance

- Ash Sources
 - Lubricant additives (Zn, Ca, Mg, S, P)
 - Engine wear, corrosion, trace metals in fuels

- Ash Mitigation
 - CJ-4 oil specification - limits sulfated ash to 1.0% maximum
 - Novel DPF designs and substrates – asymmetric, membranes, and others
 - Reduced engine oil consumption

Fundamental Understanding of Ash Properties Lacking
Most of Material Trapped in DPF is Ash

After only 33,000 miles over 50% of material trapped in DPF is ash.

- Ash @ 42 g/l:
 - 75% ash in end-plug (vol.)
 - -27% DPF channel area
 - -40% DPF channel length

No Ash

Ash
Experimental Apparatus – DPF Performance Testing

Cummins ISB used for DPF performance evaluation before and after ash loading tests on accelerated test rig.

- **Cummins ISB 300**
 - Variable geometry turbocharger
 - Cooled EGR
 - Common rail fuel injection
 - Fully electronically controlled

- **Gaseous Emissions**
 - CAI 300 HFID – Hydrocarbons
 - CAI 400 HCLD – NO/NOx
 - CAI 602P NDIR – CO/CO2/O2
 - API 100 E – SO2

- **Particulate Emissions**
 - Sampling and comparison to burner

Cummins ISB 300 with DPF
Accurately Simulate Key Oil Consumption Mechanisms

- Each parameter independently variable
- Precise control of quantity and characteristics of ash generated

System Specifications

- Exhaust heat exchangers – counter flow
- Centrifugal blower – backpressure control
- D5.66” x 6” DPF

Accelerated Ash Loading System

System Specifications

- Exhaust heat exchangers – counter flow
- Centrifugal blower – backpressure control
- D5.66” x 6” DPF
Key Test Parameters

DPF Specifications
- Substrate – Cordierite D5.66” x 6” 200/12, catalyzed

Lubricant Composition
- All oils except pure base oil formulated to 1% sulfated ash

<table>
<thead>
<tr>
<th>Lubricant</th>
<th>ASTM D5185</th>
</tr>
</thead>
<tbody>
<tr>
<td>CJ-4</td>
<td>586</td>
</tr>
<tr>
<td>Base Oil</td>
<td>1</td>
</tr>
<tr>
<td>Base Oil + Ca</td>
<td>3</td>
</tr>
<tr>
<td>Base Oil + ZDDP</td>
<td>1</td>
</tr>
</tbody>
</table>

Test Fuel - ULSD (Metals below ICP MDL ~1.0 – 0.05 ppm)

DPF Ash Loading
- Ash loading to max 42 g/l (equivalent on-road exposure ~ 240k miles)
- Periodic regeneration cycle
Typical Accelerated Ash Loading Cycle

- **Loading Cycle**
 - 55 cycles
 - 1 hour loading @ 250 °C inlet
 - 15 min. regen @ 600–620 °C inlet
 - Constant exhaust flow rate
 - Exhaust temp. varied via heat exchangers

Temperature Cycles

- Time [hr]
- Pressure Drop [kPa]
- Temperature [°C]

ΔP Cycles
DPF Post-Mortem Analysis

- **DPF Sectioned**
 - (4) Axial sections: 1.5” long
 - (5) Radial samples: ~140 – 180 cells
 - (20) samples per DPF

- **Sample Measurements**
 - Ash weight
 - Ash layer thickness and volume
 - Ash composition XRD, SEM-EDX
Individual Additive Effects on Pressure Drop (Ash)

- Lubricant additive chemistry affects ash properties and pressure drop
- Ca-based ash shows much larger effect on pressure drop than Zn ash

* Assumes: 15 g/hr avg. oil consumption, avg. speed of 40 mph, and full size DPF of 12 L volume
Ash First Accumulates Along DPF Channel Walls

- Ash preferentially deposited in end-plug during later stages of ash build-up
Ash Layer Thickness Profiles Similar for All Lubricants

- **Ash Layer Thickness**
 - Ca and Zn ash show slightly thicker ash layer vs. CJ-4 oil despite lower ash levels
 - Ash deposits on walls before forming ash plug

- **Channel Open Area**
 - Channel area reduced 27% to 40%
 - Despite similar deposit profiles, Zn ash showed much lower pressure drop
 - Ash properties (K) affected by lube chemistry
Additive Chemistry Affects Ash Packing Density

- Significant difference in packing density for ash along wall vs. plug
- Ash in end-plug less densely packed than ash along channel wall for CJ-4 oil
- Variation in packing density less pronounced for Ca and Zn ash

Packing Density [g/cm³]

- 0.30
- 0.25
- 0.20
- 0.15
- 0.10
- 0.05
- 0.00

Axial Distance [mm]

- 57
- 133

CJ-4 42 g/l
Ca 29 g/l
Zn 28 g/l

Zn₂Mg(PO₄)₂, CaSO₄
CaSO₄
Zn₂(P₂O₇), Zn₃(PO₄)₂

[Graph showing packing density at different axial distances with labels for CJ-4, Ca, and Zn]
Ash loaded DPFs exhibit non-linear pressure drop response to PM loading
- Ash decreases pressure sensitivity to low PM loads <0.5 g/l
- Ash increases pressure sensitivity to PM loads >3.0 g/l
Individual Additive Effects: Pressure Drop Sensitivity

Ca and Zn base oils show similar effects on pressure drop sensitivity, particularly for soot loads < 3.0 g/l.

Fully-formulated CJ-4 oil shows largest effect on pressure drop sensitivity.
Ash and Soot Effects on Fuel Economy (CJ-4)

- FEP estimate assumes adiabatic expansion of ideal gas through turbo
- Model inputs from experimental data
- Soot + ash results in largest increase in FEP

\[FEP \approx \frac{\Delta W_{\text{turbo}}}{W_{\text{engine}}} \times 100 \]
Conclusions

Additive Chemistry Effects on DPF Pressure Drop

- Ash accumulation is a dynamic process – Ash first primarily accumulates along channel walls before forming end plugs at the back of the DPF
- Increase in DPF pressure drop 2X more severe with Ca ash than Zn
- Similar ash properties and pressure drop trends between CJ-4 oil and Ca oil indicate CaSO_4 may be most detrimental ash component

Ash + Soot Effects on DPF ΔP and Fuel Economy

- Ash decreases pressure sensitivity to low soot loads (<0.5 g/l)
- Ash increases pressure sensitivity for soot loads > 3g/l
- Increase in pressure drop sensitivity most severe with fully-formulated oils
- Ash alone results in only small increase in backpressure and fuel economy
- Soot accumulated in ash-loaded DPF results in largest FEP
Acknowledgements

- Research supported by: MIT Consortium to Optimize Lubricant and Diesel Engines for Robust Emission Aftertreatment Systems
- We thank the following organizations for their support:

 - Caterpillar - Chevron - Ciba
 - Cummins - Detroit Diesel - Komatsu
 - NGK - Oak Ridge National Lab - Süd-Chemie
 - Valvoline - Ford - Lutek

- MIT Center for Materials Science and Engineering