Powertrain Trends and Future Potential

Dr. Johannes-Joerg Rueger
Sr. Vice President, Robert Bosch

Panel “New Directions in Engine and Fuels”
DEER Conference,
Dearborn, August 4, 2009
Powertrain Trends and Future Potential

Agenda

• Global Trends – Fighting Global Warming

• Future of Powertrain Systems – Efficient CO2 reduction @ reasonable costs

• Clean Diesel – Neglected in the U.S. for Too Long
CO₂ emission reduction is a world-wide topic!
Worldwide Powertrain Trends

Production: Vehicles World by Region

Mio.

- Diesel
- DI-Gasoline
- PFI-Gasoline
- Flex-Fuel, CNG, LPG
- Hybrid, EV
- Estimation 10.2008

Source: DS/MKS 9840144

North & Latin America
Europe
Japan & Thailand
China
India
Other Regions

% Diesel Share

Source: C/AS LTFC Cycle I 2009 Group View

* Other Regions = Australia, Africa and Asia w/o Japan, Thailand and China

DI-Gasoline = Direct Injection Gasoline; EV = Electric Vehicle;
CNG = Compressed Natural Gas; LPG = Liquified Petroleum Gas

Automotive Technology

DS/NE-NA | August 4, 2009 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of
disposal such as copying and passing on to third parties.
Worldwide Powertrain Trends

Powertrains for Passenger Cars – Timeline

- Gasoline
- Diesel
- Alternative fuels
- Hybrid
- HCCI
- Electric/Battery
- Range extender
- Electric/Fuel cell
- Gasoline
- Diesel
- Alternative fuels
- Range extender
- Hybrid

1997 2015

Automotive Technology

DS/NE-NA | August 4, 2009 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties.
The Future – Not Just Electric Driving

CARB Scenario for the Introduction of Electric Cars

share of “conventional” technology

95% 80% 60%

Early Commercialization Market Acceptance (Ramp Up of New Technology) Fleet Turnover

2010 2020 2030 2040 2050

Automotive Technology

from: Cackette, California Air Resources Board, January 2009

© Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties.
Powertrain Trends and Future Potential

Agenda

• Global Trends – Fighting Global Warming

• Future of Powertrain Systems – Efficient CO2 reduction @ reasonable costs

• Clean Diesel – Neglected in the U.S. for Too Long
Future of Powertrain Systems

Efficient Emission Reduction

Reduction of Vehicle CO₂-Emissions

Direct: oCCS¹)

Hydraulic Efficiency

Mechanic Efficiency

Thermodynamic Efficiency

Low NOₓ-Combustion as enabler

Indirect:

Conventional Powertrain

Electrified Powertrain

Downsizing

Downspeeding

Optimized DeNOx

¹) Optimized Conventional Combustion System
Future Potential of Conventional Combustion Engines

CO₂ Emissions (New PCs, EU15)

Small
[1250-1470 kg]

<table>
<thead>
<tr>
<th>Year</th>
<th>CO₂ [g/km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>180</td>
</tr>
<tr>
<td>2000</td>
<td>160</td>
</tr>
<tr>
<td>2002</td>
<td>140</td>
</tr>
<tr>
<td>2004</td>
<td>120</td>
</tr>
<tr>
<td>2006</td>
<td>100</td>
</tr>
<tr>
<td>2008</td>
<td>80</td>
</tr>
<tr>
<td>2010</td>
<td>60</td>
</tr>
<tr>
<td>2012</td>
<td>40</td>
</tr>
</tbody>
</table>

Compact
[1470-1700 kg]

<table>
<thead>
<tr>
<th>Year</th>
<th>CO₂ [g/km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>180</td>
</tr>
<tr>
<td>2000</td>
<td>160</td>
</tr>
<tr>
<td>2002</td>
<td>140</td>
</tr>
<tr>
<td>2004</td>
<td>120</td>
</tr>
<tr>
<td>2006</td>
<td>100</td>
</tr>
<tr>
<td>2008</td>
<td>80</td>
</tr>
<tr>
<td>2010</td>
<td>60</td>
</tr>
<tr>
<td>2012</td>
<td>40</td>
</tr>
</tbody>
</table>

Medium
[1700-1810 kg]

<table>
<thead>
<tr>
<th>Year</th>
<th>CO₂ [g/km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>220</td>
</tr>
<tr>
<td>2000</td>
<td>200</td>
</tr>
<tr>
<td>2002</td>
<td>180</td>
</tr>
<tr>
<td>2004</td>
<td>160</td>
</tr>
<tr>
<td>2006</td>
<td>140</td>
</tr>
<tr>
<td>2008</td>
<td>120</td>
</tr>
<tr>
<td>2010</td>
<td>100</td>
</tr>
<tr>
<td>2012</td>
<td>80</td>
</tr>
</tbody>
</table>

Upper Medium
[1810-1930 kg]

<table>
<thead>
<tr>
<th>Year</th>
<th>CO₂ [g/km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>280</td>
</tr>
<tr>
<td>2000</td>
<td>260</td>
</tr>
<tr>
<td>2002</td>
<td>240</td>
</tr>
<tr>
<td>2004</td>
<td>220</td>
</tr>
<tr>
<td>2006</td>
<td>200</td>
</tr>
<tr>
<td>2008</td>
<td>180</td>
</tr>
<tr>
<td>2010</td>
<td>160</td>
</tr>
<tr>
<td>2012</td>
<td>140</td>
</tr>
</tbody>
</table>

Drastic gains achievable for both, Gasoline and Diesel technology

Source: Polk Marketing Systems

Automotive Technology
Future Potential of Conventional Combustion Engines

CO₂ Emissions for Diesel & Gasoline Technologies

Compact Class, NEDC

Gasoline AND Clean Diesels provide potentials for further CO₂ reduction
Evolution in Clean Diesel & Gasoline Technology

Gasoline

<table>
<thead>
<tr>
<th>Pkg</th>
<th>Description</th>
<th>Displ. & Torq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>G0</td>
<td>Port fuel injection (PFI)</td>
<td>2.0 l 200 Nm</td>
</tr>
<tr>
<td>G1</td>
<td>Direct injection (DI)<sup>1</sup>, turbo, downsizing, start/stop<sup>3</sup>, thermal management</td>
<td>1.4 l 210 Nm</td>
</tr>
<tr>
<td>G2</td>
<td>+ downsizing</td>
<td>1.1 l 200 Nm</td>
</tr>
<tr>
<td>G2H</td>
<td>+ hybrid<sup>2,5</sup></td>
<td>1.1 l 200+140 Nm</td>
</tr>
</tbody>
</table>

Clean Diesel

<table>
<thead>
<tr>
<th>Pkg</th>
<th>Description</th>
<th>Displ. & Torq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0</td>
<td>Common rail system, turbo</td>
<td>2.0 l 340 Nm</td>
</tr>
<tr>
<td>D1</td>
<td>+ oCCS (opt. Combustion) + start/stop<sup>4</sup> + thermal management<sup>7</sup> + downsizing, + close PI</td>
<td>1.6 l 340 Nm</td>
</tr>
<tr>
<td>D2</td>
<td>+ NO<sub>x</sub>-EGT</td>
<td>1.6 l 340 Nm</td>
</tr>
<tr>
<td>D3</td>
<td>+ downsizing</td>
<td>1.2 l 300 Nm</td>
</tr>
<tr>
<td>D3H</td>
<td>+ hybrid<sup>2,5</sup></td>
<td>1.2 l 300 + 140 Nm</td>
</tr>
</tbody>
</table>

Medium class car (1 400 kg), 100 kW, MT5 (manual transmission), MVEG-cycle, EU6

1) turbo-charged with downsizing and var. valve timing (VVT); 2) max. potential w/ downsizing, transmission optimization; 3) Start/Stop w/ recup., thermo management (ThM), Decos; 4) Start/Stop w/ recup., combustion optimization; 5) Battery 1.0 kWh; 6) ThM, down speeding, downsizing, T/C optimization; 7) CO₂ optimization; 8) VVL in 2-step, down speeding, downsizing; / costs 2014 / * Further Clean Diesel evolution steps D1 & D3 are not shown

Future Potential of Conventional Combustion Engines

Medium class car (1 400 kg), 100 kW, MT5 (manual transmission), MVEG-cycle, EU6
Fuel Savings vs. Additional Component Costs

Premise: costs over 3 years at 15,000 km p.a., average fuel prices in Germany of 2006-2008: Diesel 1.20 €/l, Gasoline 1.33€/l

FE enhancement for Clean Diesels & Gasolines follows similar gradient
Powertrain Trends and Future Potential

Agenda

• Global Trends – Fighting Global Warming

• Future of Powertrain Systems – Efficient CO2 reduction @ reasonable costs

• Clean Diesel – Neglected in the U.S. for Too Long
Real American Driving Profile

Study based on GPS-monitored Californian mid-size sedan owners:

- Median Californian driving intensity is between highway and US06 cycles
Clean Diesel – Fuel Economy and Real-world Performance

Emissions follow real-world driving, not test cycles

cycle based calculation

real-world driving

Further potential of Clean Diesel with e.g. Start-Stop not even considered

Source: simulation based on Mercedes E-class, 1700kg, combustion 110kW, electrical 31kW, Li-Ion battery, 6-speed AT
Fuel Prices – Parallel Upwards Trend

EIA Diesel/Gasoline Price History and Forecast

Current (06/08/09) national average D/G = - 0.18 USD

Source: EIA

Automotive Technology

DS/NE-NA | August 4, 2009 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties.
Clean Diesel – Prevailing in Total Cost of Ownership (TCO)

Auction Results (Example Jetta TDI / Prius)

- **VW Jetta TDI**
- **Toyota Prius**

Residual value [%]

* Mileage [miles]*

- 5 year / 68k miles

* auction data from 2006 to Mid 2008

Source: Martec / Mannheim Auto Auction

Automotive Technology

DS/NE-NA | August 4, 2009 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties.
Clean Diesel – Prevailing in Total Cost of Ownership (TCO)

TCO example VW Jetta TDI

Fuel Price [USD] vs. Mileage [miles]

- Diesel = Gasoline - 25 ct
- Diesel = Gasoline
- Diesel = Gasoline + 25 ct

Current Price: 2.49 USD
Price delta: 0.18 USD

Break Even at 6500 miles/year

Source: Martec / Edmunds
Powertrain Trends and Future Potential

Dr. Johannes-Joerg Rueger
Sr. Vice President, Robert Bosch

Panel “New Directions in Engine and Fuels”
DEER Conference,
Dearborn, August 4, 2009