15th Diesel Engine-Efficiency and Emissions Research Conference August 3rd, 2009

High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control

Rolf D. Reitz, Reed Hanson, Derek Splitter, Sage Kokjohn

> Engine Research Center University of Wisconsin-Madison

> > http://reitz.me.wisc.edu

Acknowledgements:

Department of Energy/Sandia National Laboratory

Contract DEFC26-06NT42628

Diesel Emission Reduction Consortium

Outline

- Motivation
- Experimental Results
 - Gasoline PPC
- CFD Modeling Fuel reactivity
- Experimental Results
 - Dual-fuel PCCI
- Conclusions

Motivation

Concern for improved fuel efficiency – GHG, economy

• Emissions regulations EPA 2010 on-highway HD Euro 5,6

LTC (MK,PCCI,HCCI, etc.) **Advantages**

Low NOx and PM emissions High thermal efficiency

Disadvantages

Load limits from high PRR No direct control of combustion timing

PPC – "hybrid"

between HCCI and diesel LTC Kalghatgi "Mixed enough" combustion

Park & Reitz, CST, 2007 Low emissions window

Motivation

Partially Premixed Combustion

Increase ignition delay to add mixing time

2 ways to achieve PPC

High EGR rates

 Reduce PM formation with low combustion temperatures (Akihama SAE 2001-01-0655)

Fuels

- Use low CN fuels and EGR to add ignition delay (Kalghatgi SAE 2007-01-0006)
- Optimize fuel reactivity (Bessonette SAE 2007-01-0191)

Diesel vs. gasoline compression ignition

raighatgi. OAL i apei 2007-01-0000			
Engine	heavy-duty, flat cylinder head, shallow bowl		
Bore x Stroke [mm]	127 x 154		
Compression ratio	14.0		
Diesel injector			
Number of holes, diameter [μm]	8, 200		
Operating conditions			
Engine speed [rpm]	1200		
Swirl ratio	2.4		
Intake temperature [C], Pressure [bar]	40, 2.0		
Oxygen fraction @ IVC/EGR [%]	15.8/25		
Pilot split ratio [%]	30		

Injection profile

Numerical models

Single Zone Simulations

SENKIN engine code ERC reduced PRF mechanism 41 species, 130 reactions – Ra & Reitz CNF, 2008

Multi-Dimensional Modeling

KIVA-3V code coupled with CHEMKIN II

RNG k-ε turbulence model

KH-RT drop break up model

Grid-independent spray models

Drop collision and coalescence

ERC reduced PRF mechanism

KIVA Modeling - Ra, Yun, Reitz Int. J. Vehicle Design 2009

Diesel vs. gasoline - double injection

Start of injection: -137 and -6 (diesel), -9 (gasoline) deg atdc.

- Measured (Kalghatgi et al. SAE 2007)

Model: ERC KIVA-CHEMKIN w/ PRF mechanism

Diesel vs. gasoline - ignition delay

Diesel vs. gasoline - emissions

Additional time for mixing of gasoline offers benefits for CIDI engines!

Outline

- Motivation
- Experimental Results
 - Gasoline PPC
- CFD Modeling Fuel reactivity
- Experimental Results
 - Dual-fuel PCCI
- Conclusions

ERC Caterpillar engine lab

3401E SCOTE

Displacement (I)	2.44
Geometric Comp. Ratio	16:1
Bore (mm)	137
Stroke (mm)	165
Number of Valves	4
IVC (BTDC modified cam)	85/143
Effective Comp. Ratio	~12-16
Swirl Ratio (stock)	0.7
Piston Bowl Geometry	Stock

Injection systems:

Cat HEUI 315B, Bosch Gen 2 Common Rail 1500 bar, 0.25 mm 6-hole

Gasoline experimental conditions

Double injection

- A50
 - EGR
- Low Load (A25)

Single Injection

• A50 with 40% EGR

Baseline Operating Conditions

FTP Cycle Point	A50	A25
Speed [rpm]	1300	1300
IMEP net [bar]	11	6.5
Pilot/Main % Split	30/70	30/70
Pilot SOI [ATDC]	-137	-137
Injection Pressure [bar]	1500	1500
Intake Temp [°C]	40	40
Intake Pressure [kPa]	200	152
EGR [%]	0-45	0-30

Hanson et al. "Operating a Heavy Duty DICI Engine with Gasoline for Low Emissions," SAE 2009-01-1442, 2009

Effect of EGR - gasoline

A50 double injection EGR

• Simultaneous PM vs. NOx tradeoff can be achieved with sufficient EGR

 Approach EPA HD 2010 NOx and PM emissions levels at 45% EGR

 Ignition Delay increases due to combination of EGR and low CN fuel

EID=SOI-CA50

2010

Effect of EGR - gasoline

- Combustion duration decreases with EGR → gasoline HCCI
 (fixed CA50 requires earlier SOI)
- Pressure rise rates increase (still lower than typical HCCI)

- Net ISFC decreases:
- combustion phasing optimized
- 50% Indicated Thermal Efficiency approached

Gasoline single injection - A50

A50 Double Injection

 Equivalence ratio stratification controls ignition and heat release profile

Injection Strategy	Double	Single	
EGR (%)	40.8	41	
NOx (g/kWh)	0.41	0.37	
HC (g/kWh)	2.68	1.39	
PM (g/kWh)	0.021	0.026	F00/
CO (g/kWh)	6.76	5.53	50% indicated
ISFC net (g/kWh)	173.5	167.9	thermal
IMEP net (bar)	11.23	11.62	Efficiency
Max PRR (bar/deg)	12.4	9.0	15

Outline

- Motivation
- Experimental Results
 - Gasoline PPC
- CFD Modeling Fuel reactivity
- Experimental Results
 - Dual-fuel PCCI
- Conclusions

Comparison of diesel vs. gasoline ignition delay

- CHEMKIN ERC PRF Mechanism
- Constant volume combustion with T_{init}=800-900 K

- n-heptane (diesel) delay ~6 x shorter than iso-octane (gasoline)
- Diesel delay much less sensitive to pressure and equivalence ratio
- Gasoline fuel requires boosted operation and/or high intake temperature and locally rich but "mixed enough" (low swirl, low injection pressure)

Fuel reactivity control: Dual-fuel PCCI

- Bessonette (SAE 2007-01-0191) extended HCCI load range by varying fuel composition
 - -16 bar BMEP → required 27 cetane fuel: gasoline-like
 - -3 bar BMEP → required 45 cetane fuel: diesel-like
- Optimized operation requires different fuel reactivity for different operating conditions: Dual-fuel
 - Port fuel injection of gasoline
 - Direct injection of diesel fuel

← Fuel blending in-cylinder

Diesel Exhaust "Fuel"

Modeling used for PRF & EGR selection

SENKIN ERC-PRF simulations

- 6, 9, and 11 bar IMEP

- 1300 rev/min

iso-octane → gasoline n-heptane → diesel

 As load is increased, minimum ISFC <u>cannot</u> be achieved with either neat diesel or neat gasoline

Kokjohn & Reitz – ICLASS-09

Charge preparation

KIVA GA optimization used to choose injection parameters*

- Gasoline port injection
- Diesel DI
- SOI1 ~ -60° ATDC
- SOI2 ~ -33° ATDC
- 60% of diesel fuel in first injection

Crank = -10.0 °ATDC

* Kokjohn et al. SAE 09FFL-0107

Outline

- Motivation
- Experimental Results
 - Gasoline PPC
- CFD Modeling Fuel reactivity
- Experimental Results
 - Dual-fuel PCCI
- Conclusions

Experiments: Dual-fuel PCCI - 11 bar

IMEP (bar)		11	
Speed (rpm)		1300	
EGR (%)		45.5	
Equivalence ratio (-)	0.77		
Intake Temp. (°C)	32		
Intake pressure (bar)	2.0		
Gasoline (% mass)	78	82	85
Diesel inject pressure (bar)	800		
SOI1 (° ATDC)	-67		
SOI2 (° ATDC)	-33		
Fract. of diesel in 1st pulse	0.65		
IVC (°ATDC)	- 85		

- Fuel reactivity controls ignition and he
- Combustion phasing easily controlled

Effect of Comp. Ratio: Dual-fuel PCCI

IMEP (bar)	Ç)
Speed (rpm)	1300	
EGR (%)	43	
Equivalence ratio (-)	0.5	
Intake Temp. (°C)	32	
Intake pressure (bar)	2	1.74
Gasoline (% mass)	78	82
Diesel inject pressure (bar)	800	
SOI1 (° ATDC)	-58	
SOI2 (° ATDC)	-37	
Fract. of diesel in 1st pulse	0.62	
IVC (°ATDC)	-85	-143

- Stock CR (IVC 143) requires more gasoline to achieve similar combustion
- PRR controlled with gasoline fraction

Effect of Comp. Ratio: Dual-fuel PCCI

IMEP (bar)	Ç)
Speed (rpm)	1300	
EGR (%)	43	
Equivalence ratio (-)	0.5	
Intake Temp. (°C)	32	
Intake pressure (bar)	2	1.74
Gasoline (% mass)	78	82
Diesel inject pressure (bar)	800	
SOI1 (° ATDC)	-58	
SOI2 (° ATDC)	-37	
Fract. of diesel in 1st pulse	0.62	
IVC (°ATDC)	-85	-143

NOx and soot similar for both cams
→ well below US 2010

PRR < 10 bar/deg and netISFC of 158 g/kW-hr!

Dual-fuel PCCI – Thermal efficiency

Conv. Diesel: Staples SAE 2009-01-1124; LTC: Hardy 2006-01-0026, 2006; Gas PPCI: Hanson SAE 2009-01-1442, 2009; D-F PCCI: Kokjohn SAE 09FFL-0107

Simulation results

Extended combustion duration even as load is increased

Uncharacteristic of PCI combustion

Small diesel quantity provides improved control compared to gasoline HCCI

Conclusions

- PPC "Mixed enough" Gasoline
 - No traditional PM/NOx tradeoff
 - Approach 2010 EPA HD on-highway truck emission standards in-cylinder at 11 and 6 bar net IMEP
 - Low ISFC and pressure rise rate
- Dual-fuel PCCI concept used to control fuel reactivity
 - Port fuel injection of gasoline (cost effective)
 - Direct injection of diesel fuel (moderate injection pressure)
 - Possibility of traditional diesel or SI (with spark plug) operation retained for full load operation
- Dual-fuel operation at 6, 9, and 11 bar net IMEP achieved with near zero NOx and soot and reasonable Pressure Rise Rate
- 53% indicated thermal efficiency achieved <u>while</u> easily meeting US 2010 EPA standards in-cylinder

Dual-fuel surpasses 50% Thermal Efficiency engines

Wartsila-Sulzer RTA96-C turbocharged two-stroke diesel is the most powerful and efficient prime-mover in the world. Bore 38", 1820 L, 7780 HP/Cyl at 102 RPM

• If technology could be applied to all US Truck and Auto engines, oil consumption could be reduced by 1/3 = oil imports from Persian Gulf

Fuel Efficiency and US Oil Consumption

US Petroleum consumption: 20.7 Million Barrels of Oil per Day* 65% used in transportation = 13.5 MBOD

Truck and Automotive fuel usage reduction by Dual Fuel:

- 4.2 MBOD Diesel: $45\% \rightarrow 53\%$
 - = improvement of 18% = 0.6 million barrels saved
- 9.3 MBOD Gasoline SI: $30\% \rightarrow 53\%$
 - = improvement of 77% = 4.1 million barrels saved

Total saved = 4.7 MBOD = 34% of US transportation oil (23% of total US petroleum used $\sim 1 Billion saved / 2 days)

- Could reduce transportation oil consumption by 1/3
 - = US imports from Persian Gulf
 - while surpassing 2010 emissions regulations
- US DOE/EERE FreedomCar & 21st Century Truck fuel efficiency goals: 50% increase in light-duty, 25% increase in heavy-duty