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Motivation

• Emissions regulations
EPA 2010 on-highway HD
Euro 5,6

LTC (MK,PCCI,HCCI, etc.)
Advantages

Low NOx and PM emissions
High thermal efficiency

Disadvantages
Load limits from high PRR 
No direct control of 
combustion timing

PPC

 
–

 
“hybrid”

between HCCI and diesel LTC
Kalghatgi

 

“Mixed enough”

 

combustion

• Concern for improved fuel efficiency –
 

GHG, economy 

Park & Reitz, CST, 2007
Low emissions window
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Motivation

Partially Premixed Combustion
–

 
Increase ignition delay to add mixing time

2 ways to achieve PPC

•
 

High EGR rates
–

 
Reduce PM formation with low combustion temperatures

(Akihama SAE 2001-01-0655)
•

 
Fuels
–

 
Use low CN fuels and EGR to add ignition delay 

(Kalghatgi

 
SAE 2007-01-0006)

–

 
Optimize fuel reactivity 

(Bessonette SAE 2007-01-0191)
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Engine heavy-duty, flat cylinder 
head, shallow bowl

Bore x Stroke [mm] 127 x 154
Compression ratio 14.0

Diesel injector

Number of holes, 
diameter [m]

8, 
200

Operating conditions
Engine speed [rpm] 1200

Swirl ratio 2.4

Intake temperature 
[C], Pressure [bar]

40, 
2.0

Oxygen fraction @ 
IVC/EGR [%] 15.8/25

Pilot split ratio [%] 30

Kalghatgi: SAE Paper 2007-01-0006

Diesel vs. gasoline compression ignition
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Numerical models

Single Zone Simulations
SENKIN engine code
ERC reduced PRF mechanism 

41 species, 130 reactions –
 

Ra & Reitz CNF, 2008

Multi-Dimensional Modeling
KIVA-3V code coupled with CHEMKIN II
RNG k-ε

 
turbulence model

KH-RT drop break up model 
Grid-independent spray models
Drop collision and coalescence
ERC reduced PRF mechanism

KIVA Modeling -

 

Ra, Yun, Reitz 
Int. J. Vehicle Design 2009
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Start of injection: -137 and -6 (diesel), -9 (gasoline) deg atdc. 
-

 

Measured (Kalghatgi et al. SAE 2007)
Model:  ERC KIVA-CHEMKIN w/ PRF mechanism 

Diesel vs. gasoline -
 

double injection
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CA= tdc

CA= +4

CA= +6

CA= +12

Diesel SOI = -2

CA= -8

CA= tdc

CA= +10

Gasoline SOI = -11

CA= +12

Diesel vs. gasoline -
 

ignition delay
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Diesel vs. gasoline -
 

emissions

Additional time for mixing 
of gasoline offers benefits 
for CIDI engines!
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ERC Caterpillar engine lab 
3401E SCOTE

Displacement (l) 2.44

Geometric Comp. Ratio 16:1
Bore (mm) 137
Stroke (mm) 165

Number of Valves 4
IVC (BTDC modified cam) 85/143
Effective Comp. Ratio ~12-16

Swirl Ratio (stock) 0.7
Piston Bowl Geometry Stock

Injection systems:
Cat HEUI 315B, 
Bosch Gen 2 Common Rail
1500 bar, 0.25 mm 6-hole
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Gasoline experimental conditions

Double injection
• A50

– EGR
• Low Load (A25)

Single Injection

• A50 with 40% EGR

FTP Cycle Point A50 A25
Speed [rpm] 1300 1300
IMEP net [bar] 11 6.5

Pilot/Main % Split 30/70 30/70
Pilot SOI [ATDC] -137 -137
Injection Pressure [bar] 1500 1500

Intake Temp [°C] 40 40
Intake Pressure [kPa] 200 152

EGR [%] 0-45 0-30

Baseline Operating Conditions

Hanson et al. "Operating a Heavy Duty DICI Engine with 
Gasoline for Low Emissions," SAE 2009-01-1442, 2009 
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Effect of EGR -
 

gasoline

A50 double injection EGR 
•

 

Simultaneous PM vs. NOx tradeoff 
can be achieved with sufficient EGR

EID=SOI-CA50 

• Ignition Delay increases due to 
combination of EGR 
and low CN fuel

2010

• Approach EPA HD 2010 NOx

 

and  
PM emissions levels at 45% EGR
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•

 

Combustion duration decreases 
with EGR 

 

gasoline HCCI

(fixed CA50 requires earlier SOI)

•

 

Pressure rise rates increase            
(still lower than typical HCCI) 

Effect of EGR -
 

gasoline

•

 

Net ISFC decreases:                         
-

 

combustion phasing optimized

•

 

50% Indicated Thermal  Efficiency  
approached 
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A50 Double Injection A50 Single Injection

Injection Strategy Double Single

EGR (%) 40.8 41

NOx (g/kWh) 0.41 0.37

HC (g/kWh) 2.68 1.39

PM (g/kWh) 0.021 0.026

CO (g/kWh) 6.76 5.53

ISFC net (g/kWh) 173.5 167.9

IMEP net (bar) 11.23 11.62

Max PRR (bar/deg) 12.4 9.0

Gasoline single injection -
 

A50 

• Equivalence ratio
stratification
controls ignition
and heat release
profile

50% 
indicated 
thermal
Efficiency
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-
 

Constant volume combustion with Tinit

 

=800-900 K

iso-octanen-heptane

• n-heptane

 

(diesel) delay ~6 x shorter than iso-octane (gasoline)
• Diesel delay much less sensitive to pressure and equivalence ratio
• Gasoline fuel requires boosted operation and/or high intake temperature 

and locally rich but “mixed enough”

 

(low swirl, low injection pressure)

Comparison of diesel vs. gasoline ignition delay

• CHEMKIN –
 

ERC PRF Mechanism 

2 deg 12 deg
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• Optimized operation requires different fuel reactivity for different
operating conditions: Dual-fuel
– Port fuel injection of gasoline
– Direct injection of diesel fuel

Fuel reactivity control: Dual-fuel PCCI

•

 

Bessonette

 

(SAE 2007-01-0191) extended HCCI load range by varying fuel 
composition

–16 bar BMEP 

 

required 27 cetane fuel: gasoline-like
–3 bar BMEP 

 

required 45 cetane fuel: diesel-like

Gasoline  Diesel



 

Fuel blending in-cylinder

-
 

No DEF tank!
Diesel
Exhaust
“Fuel”
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-

 

6, 9, and 11 bar IMEP
- 1300 rev/min

iso-octane 

 

gasoline
n-heptane

 



 

diesel

6 bar IMEP
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Experiments
• SENKIN ERC-PRF simulations

• As load is increased, 
minimum ISFC cannot

 

be 
achieved with either neat diesel 
or neat gasoline

EGR  

PR
F 

Kokjohn

 

& Reitz –

 

ICLASS-09
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* Kokjohn

 

et al. 
SAE 09FFL-0107

Charge preparation
KIVA GA optimization used to choose injection parameters*
-

 
Gasoline port injection

-
 

Diesel DI

- SOI1 ~ -60°ATDC
- SOI2 ~ -33°ATDC
-

 
60% of diesel fuel 
in first injection
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Experiments: Dual-fuel PCCI - 11 bar
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• Fuel reactivity controls ignition and heat release rate
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•

 

Stock CR (IVC 143) requires more gasoline to achieve similar combustion   
-

 

PRR controlled with gasoline fraction
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Effect of Comp. Ratio: Dual-fuel PCCI

•

 

PRR < 10 bar/deg and net 
ISFC of 158 g/kW-hr!
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Simulation results
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Conclusions
•

 
PPC “Mixed enough”

 
Gasoline

-

 
No traditional PM/NOx tradeoff

-

 
Approach 2010 EPA HD on-highway truck emission standards 

in-cylinder at 11 and 6 bar net IMEP
-

 
Low ISFC and pressure rise rate

•

 
Dual-fuel PCCI concept used to control fuel reactivity
-

 
Port fuel injection of gasoline (cost effective)

-

 
Direct injection of diesel fuel (moderate injection pressure)

-

 
Possibility of traditional diesel or SI (with spark plug) 
operation retained for full load operation

•

 
Dual-fuel operation at 6, 9, and 11 bar net IMEP achieved with 
near zero NOx and soot and reasonable Pressure Rise Rate

•

 
53% indicated thermal efficiency achieved 

while

 
easily meeting US 2010 EPA standards in-cylinder
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Wartsila-Sulzer

 

RTA96-C turbocharged two-stroke diesel is the most powerful 
and efficient prime-mover in the world. Bore 38”, 1820 L, 7780 HP/Cyl

 

at 102 RPM

Dual-fuel surpasses 50% Thermal Efficiency engines

• If technology could be applied to all US Truck and Auto engines, oil 
consumption could be reduced by 1/3 = oil imports from Persian Gulf
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US Petroleum consumption: 20.7 Million Barrels of Oil per Day*
65% used in transportation = 13.5 MBOD

Truck and Automotive fuel usage reduction by Dual Fuel:
4.2 MBOD Diesel:         45% 

 

53%
= improvement of 18%    = 0.6 million barrels saved

9.3 MBOD

 

Gasoline SI:  30% 

 

53%
= improvement of 77%    = 4.1 million barrels saved

Total saved = 4.7 MBOD = 34% of US transportation oil
(23% of total US petroleum used ~ $1 Billion saved / 2 days)

• Could reduce transportation oil consumption by 1/3 
= US imports from Persian Gulf

-

 

while surpassing 2010 emissions regulations

• US DOE/EERE FreedomCar

 

& 21st Century Truck fuel efficiency goals:
50% increase in light-duty, 25% increase in heavy-duty

Fuel Efficiency and US Oil Consumption  

http://www.eia.doe.gov/*
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