Future EfficientDynamics with Heat Recovery.

DEER 2009 – High Efficiency Engine Technologies.

A. Obieglo, J. Ringler, M. Seifert, W. Hall.

BMW Group Research and Technology

Future EfficientDynamics with Heat Recovery. Outline.

CO₂ – The Challenge. Our Answer – Efficient Dynamics.

BMW 323i Model year 1983

BMW 325i Model year 2009

1			
Fuel consumption	10.3 l/100 km	- 31 %	7.1 l/100 km
	[~22 MPG]		[~33 MPG]
Power output	102 kW	+ 57 %	160 kW
Torque	205 Nm	+ 32 %	270 Nm
Acceleration ²	9.2 s	- 27 %	6.7 s
Emission quality	ECE R15-04	+ 95 %	EU 4
Weight	1080 kg	+ 39 %	1505 kg
Drag	0.40 x 1.85 m ²	- 21 %	0.27 x 2.17 m ²
			¹ EU fuel consumption

² 0 - 100 km/h

MVEG

Efficient Dynamics. BMW's Approach to Reduce CO₂.

Efficient Dynamics. BMW's Approach to Reduce CO₂.

Future EfficientDynamics with Heat Recovery. Outline.

1

2

3

4

5

Efficient Dynamics

Heat Recovery

- Heat Recovery Systems
 - BMW Turbosteamer

Conclusions

Energy Conversion. Different Possibilites.

Efficient Dynamics. Steps towards Heat Recovery.

1. Direct Conversion

Highly efficient primary energy conversion:

- High Precision Injection
- TwinPower Turbo
- Valvetronic

2. Warming-up

Faster warming-up: No coolant circulation with electrical water pump switched off.

3. Waste Heat Recovery

Example of waste heat utilization: Turbosteamer

1

2

3

4

5

Future EfficientDynamics with Heat Recovery. Outline.

- Efficient Dynamics
- Heat Recovery
 - Heat Recovery Systems
 - BMW Turbosteamer
- Conclusions

Energy Efficiency of Vehicles.

Thermal Recuperation offers the Potential of Additional CO₂ Reduction.

Heat Sources. Exhaust Gas.

Engine type: 4-cylinder gasoline engine λ =1

Heat Sources. Coolant.

Engine type: 4-cylinder gasoline engine λ =1

Utilization of Exhaust Heat. Temperature Distribution.

1

2

4

5

Future EfficientDynamics with Heat Recovery. Outline.

- Efficient Dynamics
- Heat Recovery
- 3 Heat Recovery Systems
 - BMW Turbosteamer
 - Conclusions

What is a Turbosteamer (TS)? Cogeneration a well known Principle.

DEER 2009 BMW Group Research and

Technology Page 17

Dual-Loop-Rankine. Maximal Utilization of Exhaust and Coolant.

Dual-Loop-Rankine. Engine Map.

Single-Loop-Rankine. Simplification of the System.

complex system

Single-Loop-Rankine. Significant Increase in Fuel Efficiency.

Turbosteamer in Operation. Turbosteamer Test Bench Setup.

A similar System in almost every Car Today: Have a look on Air Conditioning.

Turbosteamer Components. For Example: Expander.

A/C Compressor 1976

First Generation Turbosteamer Expander

Today's Generation A/C compressor

Future Generation Turbosteamer Expander

Efficient Dynamics and Energy Recovery. Positioning of Systems in the Engine Map.

Potential Savings. Heat Recovery.

What are the savings for a long distance driver at mileage of 120,000 miles?	Today	Future				
Take for example a car with	25 mpg	35 mpg				
the overall consumption would be	4,800 gallon	3,400 gallon				
Assuming that additional 5 to 10% of fuel could be saved:						
That is less	240-480 gallon	170-340 gallon				
With a price of	3\$/gallon	5\$/gallon				
the saving for this driver is	\$720-1,440	\$850-1,700				

1

2

3

4

5

Future EfficientDynamics with Heat Recovery. Outline.

- Efficient Dynamics
- Heat Recovery
- Heat Recovery Systems
- BMW Turbosteamer

Conclusions

Waste Heat Recovery with the Turbosteamer. Conclusions.

- 1. Thermal recuperation offers the potential of additional CO_2 reduction.
- 2. The Rankine steam process is one favourable approach for waste heat recovery.
- 3. A 15% increase in engine performance could be demonstrated with a Dual-Loop-Rankine and 10% increase in engine performance could result from a Single-Loop-Rankine.

Vision. Thermal Recuperation could make a valuable Contribution to the Increase in Fuel Efficiency.

