

Development and Field Demonstrations of the Low NO₂ ACCRT™ System for Retrofit Applications

Ajay Joshi, Mojghan Naseri, Abhilash Nigam, Jason Stimmel

Johnson Matthey

DEER 2009

Outline

- Introduction
- System Description
- System Performance
- Field Demonstrations
- Summary

Outline

- Introduction
- System Description
- System Performance
- Field Demonstrations
- Summary

Diesel Retrofits and NO₂ Regulations

- Passive PM retrofits rely on NO₂ generation for low temperature combustion of soot
- NO₂ is classified as a criteria pollutant with both federal and state ambient air quality standards and is known to contribute to formation of ozone and particulate nitrates
 - In Jan 2009, CARB and EPA enforced a limit to the amount of allowable NO₂ increase from diesel retrofit technologies to 20% above engine baseline
 - Many retrofit technologies have been deverified due to non-compliance with the NO₂ limit

JM's solution – The ACCRT™ System

ACCRT = Advanced Catalyzed Continuously Regenerating Technology

ACCRT System Technology Highlights

- EPA and CARB Level 3 Verified Technology
 - >90% PM reduction
 - Complies with 2009 NO₂ Regulations
 - Does not increase NO₂ by over 20% of engine baseline
- For challenging applications
 - MY 2002-2006, includes both EGR and non-EGR engines
 - Fully passive regeneration
 - No high temperature regenerations
 - Minimal maintenance

Only EPA+ CARB verified passive DPF for EGR engines

ACCRT System Application Requirements

- Exhaust gas temperature must exceed 240°C for greater than 40% of operating time
- Can be applied to engine with and without EGR systems
- Engines may have a pre-existing DOC, must be removed prior to installation
- Engines manufactured between 2002-2006, certified to NOx standard of 2.5 g/bhp-hr and PM below 0.1 g/bhp-hr
- Currently available sizes allow application on engines with displacements between 5.9 liters – 15 liters, and horsepower ratings between 150 hp – 500 hp

Outline

- Introduction
- System Description
- System Performance
- Field Demonstrations
- Summary

ACCRT System Principle of Operation

Highly efficient DOC+CSF followed by NO₂ decomposition

ACCRT System Schematic

Johnson Matthey ACCRT™ System

ACCRT System Major Components

- CCRT Section
 - Diesel Oxidation Catalyst (DOC) + Catalyzed Soot Filter (CSF)
- Decomposition Catalyst
- Fuel Dosing System
 - Doser
 - Fuel Pump Module

CCRT® Section - Overview

- Proven PM reduction technology for on-road, off-road and stationary applications for over 10 years
- Millions of miles of durability experience
- Previously CARB and EPA verified technology

CCRT Section – Operating Principle

Decomposition Catalyst Function

- Decomposes NO₂ to NO in a lean exhaust gas environment
- This is achieved by adjusting C1 HC:NO₂ ratio of exhaust gas and contacting the exhaust gas with a proprietary catalyst
- Amount of HC dosed is very low
- The proprietary catalyst promotes the decomposition of NO₂ to NO via reaction with HC. The catalyst is also designed to be a reservoir for the HC reductant

Decomposition Catalyst Performance Reactor Test Data

NO₂ reduction achieved by controlling HC: NO₂ ratios

ACCRT System NO₂ Reduction Hot Start FTP on Engine Dyno

NO₂ Reduction Impact of Decomposition System Avg of 3 Hot FTPs on Cummins ISM 330 HP

ACCRT System Doser

Contains

- Controller with datalogger
- Fuel manifold
- Fuel injector
- Fuel pressure sensor for leak detection

Features

- Airless injection system
- Over 1 year data logging
- Rated for -20°C to 100°C

ACCRT System Fuel Pump Module

Contains

- Fuel Pump
- Fuel filter
- Pressure Regulator

Features

- 3 bar fuel pressure
- 10 micron fuel filtering
- Can be integrated into existing vehicle fuel system

Controls Overview

Outline

- Introduction
- System Description
- System Performance
- Field Demonstrations
- Summary

Performance validated on multiple test engines

All test engines meet applicable emissions standards

• NOx+NMHC: 2.5 g/bhp-hr

• PM: 0.1 g/bhp-hr

Test Fuel: 2007 Certification Diesel (ULSD)

Test Cycle: FTP per 40 CFR Part 86

Emissions Measurements: HC, CO, NOx, NO, PM

PM reduction meets Level 3 Targets Avg of 3 Hot FTP cycles

Tailpipe NO₂ maintained well below CARB 20% limit 3 Hot FTP cycles

Durability demonstrated after 1000-hr aging

- Performance of 1000-hour field aged system was compared to a fresh degreened system
- 1 Cold+ 3 Hot FTP test cycles in accordance with methods described in CFR Title 40, Part 86, Subpart N
- Field aged system from the following application:

Application	Vehicle Model	Engine	HP
Long-Haul Truck	Volvo VN Series Tractor	My 2006 Cummins ISX	400

Fresh vs. Aged System Performance Comparison MY2003 DDC Series 60 500 HP – Composite FTP Cycle

Field Demonstrations

- Retrofits successfully demonstrated on a variety of engines and applications types
- Applications
 - OTR trucks
 - Refuse trucks
 - Transit buses
 - School buses
 - Municipal vehicles
- NO₂ measurements are not possible on-board, PM regeneration indicated by stable backpressure

ACCRT System Installations

JM (X)

Transit Bus Application MY 2004 DDC Series 60 385 hp, 12.7 liter EGR engine

- Exhaust Temp is 290°C for over 40% of time
- Stable backpressure observed over 900 hours of operation on a single DPF

JM 🕸

School Bus Application MY 2006 Cummins ISB 245 hp 5.9 liter EGR

- School buses with low temperature (<220°C)
- Stable backpressure over 9 months of operation (including a winter in the North Western US)

Municipal Vehicle Application MY 2005 International DT 570 9.3 liter EGR

JM 🕸

- High temperature application over 300°C
- Backpressure is stable for over 4 months of operation

Summary

- The CARB and EPA verified ACCRT System is the only passively regenerating Level 3 PM device for 2.5g NOx engines
- The ACCRT reduces PM emissions by over 90% while controlling increase of NO₂ below CARB and EPA regulatory limits
- The system reduces PM using a passively regenerating DPF and reduces NO₂ by dosing a small quantity of fuel over a decomposition catalyst
- Emissions performance has been proven on multiple test engines including both EGR and non-EGR engines
- Emissions durability has been demonstrated by showing that the system maintains performance after 1000 hours of field aging
- Field trials conducted on a diverse set of applications that include school buses, refuse trucks, transit buses, municipal vehicles and long haul trucks
- Commercialization of the technology is in progress