DIESEL PARTICULATE FILTERS AND NO2 EMISSION LIMITS

O. Ibrahim, H. Wenghoefer and C. Jackson

OUTLINE

- □ Background
- NO2 Limits From Retrofit Technologies
- □ New Air Quality Standards for NO2
- Diesel Oxidation Catalysts
- □ Passive Diesel Particulate Filters
- Active Diesel Particulate Filters
- New Oxidation/Reducing Catalysts
- Conclusions

- ☐ January 1, 2009
- ☐ EPA/CARB
- □ Limit increase in NO₂ emissions
- ☐ Less than 20% above baseline
- From Retrofit Technologies (DOC, DPF, .. etc)

CARB Verification

Level 1

Level 2

Level 3

NO₂ < 20%

Level 1 Plus

Level 2 Plus

Level 3 Plus

- ☐ June, 2009
- EPA Proposes New Air Quality Standards for NO2
- EPA Goal is to reduce respiratory illness

Health Impact of NO2

Scientific evidence links short-term NO2 exposures, with increased respiratory

effects(asthma)

☐ Particularly in at-risk are:

Children

Elderly

Workers in confined spaces

Diesel Oxidation Catalysts

$$CO + O_2$$

 $THC + O_2$
 $NO + O_2$
 $SO + O_2$
 $SOF + O_2$
 CO_2
 $CO_2 + H_2O$
 CO_2
 $CO_2 + H_2O$
 $CO_2 + H_2O$
 $CO_2 + H_2O$

Diesel Oxidation Catalysts

Diesel Oxidation Catalysts

Passive Diesel Particulate Filters

$$CO + O2$$

$$THC + O2$$

$$NO + O2$$

$$SO + O2$$

$$SOF + O2$$

$$C + O2$$

$$CO_2$$
 $CO_2 + H_2O$
 NO_2
 SO_2
 $CO_2 + H_2O$
 CO_2

Passive Diesel Particulate Filters

RYPOS

Active Diesel Particulate Filters

- ☐ Filters are not coated with oxidation catalysts
- Soot and other particulates are collected as a fluffy layer with high surface area.
- ☐ Soot, similar to activated carbon, is able to adsorb hydrocarbons and other gases
- The high surface area increases the reaction probability between carbon and nitrogen dioxide
- Mild diesel oxidation catalysts are used after DPF, thus minimizing the oxidation of NO into NO₂.

Sintered Metal Fibers

Active Diesel Particulate Filters

Electric Regeneration

Active Diesel Particulate Filters PM Reduction

Active Diesel Particulate Filters NO₂ Reduction

Active Diesel Particulate Filters NO₂ Reduction

New Washcoat

Objectives:

- 1. Develop washcoats for sintered metal fibers.
- 2. Develop catalytic topcoats with precious and non-precious metal coating formulations to reduce CO, HC and NO₂.

New Diesel Oxidation/Reducing Catalysts

Emission Reduction Targets

- □ PM Reduction: >90%
- □ CO Reduction: >90%
- ☐ THC Reduction: >90%
- \square NO₂ Reduction: >90%

New Washcoat

Goals

- Minimize wash-coat material
- Coat individual fibers
- Minimize webbing and shedding
- ☐ Minimize the use of precious metals
- ☐ Use of non-precious metals

RYPOS

Washcoat C

RYPOS

Washcoat B

Washcoat A

Emission Testing

- ☐ Testing was conducted at Intertek Lab.
- Test Engine was 2005 MY Cummins 5.9L engine.
- □ Rated at 287 HP @ 2600 rpm
- ☐ Test Cycles: ISO 8187-C1 and FTP

ISO 8187-C1 Test Results

	PM	NOx	NO ₂	CO	THC
	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr
Baseline	0.074	2.195	0.080	0.470	0.027
HDPF2	0.007	2.345	0	0.200	0.005
	91%	-3%	100%	58%	82%

FTP Test Results

	PM	NOx	NO_2	CO	THC
	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr
Baseline	0.073	2.243	0.150	0.780	0.070
HDPF2	0.004	2.345	0	0.360	0.005
	95%	-4%	100%	54%	84%

Summary/Conclusions

- □ EPA's New air quality standards for NO₂ will impact future DPF designs
- □ Passive DPFs increase NO₂ emissions
- □ Active DPFs reduce NO₂ emissions
- □ Passive/Active DPFs can provide extra degree of freedom to meet NO₂ limits
- □ New Oxidation/Reducing Catalysts are needed to reduce CO, THC and NO₂