Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction

Richard Blint, Michael B. Viola and Steven J. Schmieg
General Motors R&D Center
Warren, MI 48090-9055
DEER 2009
Tuesday, August 4th, 2009
Acknowledgements

- Gerald Koermer, Ahmad Moini and Howard Furbeck (BASF)
- Pat Mulawa, Shi-Wai Cheng, Dave Hilden, Thompson Sloane, Charles Gough, Lillian Dodge (GM)
- Ken Howden, Carl Maronde (DOE)

This publication was prepared with the support of the U.S. Department of Energy, under Award No. DE-FC26-02NT41218. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the DOE.
Background:

Hydrocarbon assisted NOx SCR for automotive catalysis

- Copper zeolites late 80’s early 90’s
- Supported catalysts (PGMs and base metals) early 90’s
 - Bethke, Alt and Kung, Catalysis Letters, 1994
- Ag/alumina
 - Burch and Millington, Catalysis Today, 1996.
 - Shimizu et al., Applied Catalysis B: Environmental, 2000.
- DOE NOx Discovery Project
 - Initiated in August of 2002, completed end of 2007
 - Over 16,000 materials synthesized and evaluated
 - Ag/alumina selected as optimum material
Lean NOx Aftertreatment

Light Duty Diesel

US06 Catalyst Temp

Limited low temperature activity

Catalyst Operating Temperature (degrees C)

NOx Conversion Efficiency (%)

1 Aged 120 k mi
2 Aged 120 k mi

SV~12,500 h⁻¹
10% O₂
5% H₂O
5% CO₂
750 ppm CO
250 ppm H₂
100 ppm NO
sim-diesel #1
HC₁::NOₓ ~ 8

Ag/alumina catalyst
Cu-ZSM-5

SCR-Urea

SCR-HC

LNT

Pt/Alumina
Engine Results

Focus is the heavy duty, US dynamometer certification using the Duramax 6.6 liter diesel

• Catalyst volume:
 – Four, 5.0 liter bricks (20.0L total vol.)
 – emission measurements are after brick 3 and brick 4

• Reductant by in-exhaust injection:
 – diesel fuel
 – ethanol

• Federal test cycles:
 – Heavy duty FTP (HDFTP),
 – Cold-start HDFTP (CHDFTP)
 – Set 13 (Supplemental Emission Test)
Supplemental Emission Test (SET)

(aka Steady State Test / 13 Mode Test, Euro III - European Stationary Cycle / ESC)

Where:
- $n_{hi} =$ High speed as determined by calculating 70% of the maximum power. The highest engine speed where this power value occurs on the power curve is defined as n_{hi}.
- $n_{lo} =$ Low speed as determined by calculating 50% of the maximum power. The lowest engine speed where this power value occurs on the power curve is defined as n_{lo}.
- Maximum power = the maximum observed power calculated according to the engine mapping procedures defined in §86.1332.

\[
\text{Speed A} = n_{hi} + 0.25 \times (n_{hi} - n_{lo})
\]
\[
\text{Speed B} = n_{lo} + 0.50 \times (n_{hi} - n_{lo})
\]
\[
\text{Speed C} = n_{lo} + 0.75 \times (n_{hi} - n_{lo})
\]

\[
A_{WA} = \frac{\sum_{i=1}^{n} \left[A_{Mi} \times WF_i \right]}{\sum_{i=2}^{\infty} \left[A_{Pi} \times WF_i \right]}
\]

Where:
- $A_{WA} =$ Weighted average emissions for each regulated gaseous pollutant, in grams per brake horse-power hour.
- $A_{M} =$ Modal average mass emissions level, in grams per hour. Mass emissions must be calculated as described in §86.1342.
- $A_0 =$ Modal average power, in brake horse-power. Any power measured during the idle mode (mode 0) is not included in this calculation.
- $WF =$ Weighting factor corresponding to each mode of the steady-state test cycle, as defined in paragraph (b)(1) of this section.
- $l =$ The modes of the steady-state test cycle, as defined in paragraph (b)(1) of this section.
- $n =$ 13, corresponding to the 13 modes of the steady-state test cycle, as defined in paragraph (b)(1) of this section.

- rpm/load changes complete within first 20 sec of each mode
- 2 minutes at each non-idle mode, 4 minutes at idle
- 1 PM filter for over 13 modes
Diesel Aftertreatment testing architecture using 6.6 Duramax engine

- Diesel fuel
- Ethanol
Minimum temperature diesel fuel injection point

- Exhaust temperatures vary from 150 °C to 500 °C
- First 600 seconds show catalyst in temperatures no higher than 250 °C
- Conclusion: Almost half the HDFTP is completed before the exhaust reaches the optimum NOx conversion temperature
Low NOx efficiency because diesel fuel not injected below 280°C

EO NOx

NOx Std = 0.20 g/HP-hr

0.74 g/HP-hr 15L HC-SCR
0.59 g/HP-hr 20L HC-SCR

3.0 % Fuel economy penalty

15.6L UREA-SCR 82% NOx efficiency
Space velocity, oxygen concentration and gas temperature each contribute to the NOx conversion at a give engine operating point.
HDFTP NOx Emissions Results with EtOH

Minimum temperature ethanol injection point
HDFTP NOx Emissions EtOH

Start dosing 200°C

High NOx conversion at start-up

10L and 15L Instantaneous NOx Efficiency

Cumulative NOx g/NOx Eff.

NOx Std = 0.20 g/HP-hr

0.24 g/HP-hr 10L HC-SCR
0.13 g/HP-hr 15L HC-SCR

5.0% F.E. penalty Diesel Equivalent

Seconds
SET 13 NOx Emissions Results with EtOH

Conversions uniformly higher at each engine operating point
NOx conversions for cold start HDFTP are reasonable
Engine Dynamometer Test Results

<table>
<thead>
<tr>
<th>Light-Duty w/ ULSD</th>
<th>Catalyst Volume</th>
<th>NOx Conversion</th>
<th>Fuel Economy Penalty</th>
<th>Weighted Emissions</th>
<th>Emission Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP75</td>
<td>20L</td>
<td>60%</td>
<td>3.1%</td>
<td>0.640 g/mi</td>
<td>0.070 g/mi</td>
</tr>
<tr>
<td>US06</td>
<td>20L</td>
<td>76%</td>
<td>2.6%</td>
<td>0.149 g/mi</td>
<td>0.400 g/mi</td>
</tr>
<tr>
<td>HWYFET</td>
<td>20L</td>
<td>92%</td>
<td>2.4%</td>
<td>0.024 g/mi</td>
<td>0.070 g/mi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heavy-Duty w/ ULSD</th>
<th>Catalyst Volume</th>
<th>NOx Conversion</th>
<th>Fuel Economy Penalty</th>
<th>Weighted Emissions</th>
<th>Emission Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot HDFTP</td>
<td>20L</td>
<td>60%</td>
<td>3.0%</td>
<td>0.59 g/BHP-h</td>
<td>0.20 g/BHP-h</td>
</tr>
<tr>
<td>SET 13-Mode</td>
<td>20L</td>
<td>65%</td>
<td>2.7%</td>
<td>0.63 g/BHP-h</td>
<td>0.20 g/BHP-h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heavy-Duty w/ Ethanol</th>
<th>Catalyst Volume</th>
<th>NOx Conversion</th>
<th>Fuel Economy Penalty</th>
<th>Weighted Emissions</th>
<th>Emission Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot HDFTP</td>
<td>15L</td>
<td>82%</td>
<td>4.3% (diesel eq.)</td>
<td>0.13 g/BHP-h</td>
<td>0.20 g/BHP-h</td>
</tr>
<tr>
<td>SET 13-Mode</td>
<td>15L</td>
<td>91%</td>
<td>4.7% (diesel eq.)</td>
<td>0.16 g/BHP-h</td>
<td>0.20 g/BHP-h</td>
</tr>
<tr>
<td>HDFTP (wtd. hot+cold)</td>
<td>15L</td>
<td>86%</td>
<td>4.7% (diesel eq.)</td>
<td>0.20 g/BHP-h</td>
<td>0.20 g/BHP-h</td>
</tr>
</tbody>
</table>

Light-Duty: SAE 2008-01-2487 (M.B. Viola)

Heavy-Duty: submitted SAE 2009 (M.B. Viola)
Dual-Catalyst Concept: HC-SCR + NH₃-SCR

SOLUTION:

- NOₓ + C₂H₅OH → N₂ + NOₓ + NH₃ → N₂

HC-SCR
- HC-SCR @ SV ~ 25,500 h⁻¹ +/- NH₃-SCR @ SV ~ 60,000 h⁻¹
- 6% O₂ / 5% H₂O / 5% CO₂ / 750 ppm CO / 250 ppm H₂
- 400 ppm NO / 431 - 1724 ppm C₂H₅OH (HC₁:NOₓ ~ 2.2 to 8.6)

NH₃-SCR
- 3.0 wt.% Ag₂O/Al₂O₃ + Cu-zeolite

- **Tune ethanol injection amount to “balance” NOₓ and NH₃ breakthrough**
- **High NOₓ conversion levels maintained while lowering amount of ethanol injected**
- **System optimization still required**

Dual-Catalyst Concept

- HC-SCR + NH₃-SCR
- Solution: NOₓ + C₂H₅OH → N₂ + NOₓ + NH₃ → N₂
- “fixed” HC₁:NOₓ ~ 8.6
- “variable” HC₁:NOₓ ~ 2.2 2.2 3.2 2.7 3.2 4.3 8.6
Engine Results Status

• With diesel as a reductant
 – HDFTP: 60% NOx reduction using 3x engine displacement (ED)
 – SET 13-Mode: 65% NOx reduction using 3x ED

• With EtOH as a reductant
 – HDFTP: 84% (1.5 ED), 91% (2.3 ED) NOx reduction
 – SET 13-Mode obtained 90% (1.5 ED) NOx reduction
 – Cold start HDFTP: 82% (2.3 ED)

• Poisoning and aging evaluations
 – Sulfur does poison, but is regenerable
 – Phosphorous does deposit, but does not appear to degrade performance abnormally
 – Heavy HC’s do poison, but are also regenerable
Summary

- **Accomplishments**
 - High-throughput technology has optimized the HC-SCR catalyst formulation
 - Effectiveness of diesel fuel and ethanol demonstrated in both reactor and engine testing
 - HC-SCR control strategy has been developed
 - Dual bed technology demonstrated
 - All degradation mechanisms identified and redaction schemes devised

- **Drawbacks**
 - High SV significantly reduces the NO\textsubscript{x} conversion efficiency
 - Poor diesel fuel vaporization at low T can limit reductant delivery
 - Degradation modes require close engine control
 - Hydrocarbon slip