Demonstrating and Validating a Next Generation Model-Based Controller for Fuel Efficient, Low Emissions Diesel Engines

Marc Allain, Alexander Kropp, Yury Kalish & Houshun Zhang
Detroit Diesel, Daimler Trucks North America

Chris Atkinson
Atkinson LLC
Outline

• The need for advanced engine control

• Proposed alternative to traditional control techniques

• Viability demonstration

• Limitations & next steps
Control Systems Complexity

- Increased number of sensors and actuators
- More degrees of freedom
- New control logic required
- More calibration flexibility
- Calibration optimization more complex
Several Levels of Control

- Individual Component Level:
 - Actuator position control
 - Sensor drift
 - Signal processing
 - Diagnostics

- System Level:
 - Parameter control
 - System Interactions
 - Diagnostics

- Engine Level:
 - Emissions
 - Fuel economy
 - Diagnostics

- Truck Level:
 - Drivability
 - Heat rejection
 - Diagnostics

Constraints:
- Control stability
- Transient response
- Diagnostics

Must integrate systems with:
- Different response times
- Nonlinearities
- Part-to-part variability
Control Components

- Control logic requires extensive mapping of control gains
- Control gains are tuned to ensure stability
- Trade-off is steady-state stability vs. transient response

- Setpoint calibration is increasingly time-consuming
- "Manual" setpoint optimization is less and less practical
Illustration of Engine Control Maps

- Factorial increase in calibration space
- Multiple performance targets

Setpoints:
- Air
- EGR
- Inj. rate
- Inj. timing
- Inj. pressure
- Exh. Temp.
- Urea dosing
- HC dosing

Performance targets:
- Torque
- Drivability
- Durability
- Fuel economy
- NOx / PM / NMHC
- NO/NO2 ratio
- NH3 storage
- Urea consumption
- SCR efficiency
What’s the Alternative?

- A practically-mapless control system
- Based on predictive engine models
 - First principle models
 - Neural networks trained with transient engine data
- A controller with built-in knowledge of system interactions
 - Nonlinearities
 - Individual system response times
- Inputs: Performance targets
- Outputs: Actuator signals
- Includes an optimizer
 - Cost function that minimizes emissions and fuel consumption
 - Optimizes engine operation in real-time
1st Step: Performance Model Evaluation

Performance model accuracy is satisfactory over a wide range of operating conditions.
2nd Step: Optimized Setpoint Evaluation

- Exercised the controller model offline
- Resulting engine setpoints were evaluated at the test cell
- Measurable gains in fuel economy
3rd step: Complete Controller Evaluation

- Full model-based control logic implementation
 - Performance models
 - Controller
 - Optimizer
- Test engine: 2010 Detroit Diesel DD15
- Test cycle: U.S. FTP

Graph showing NOx emissions over time comparing baseline controller and model-based controller.
Results To-date

- Controller evaluation in 3rd quarter of the FTP cycle
- Initial results are encouraging
 - Controller operates in real-time
 - Verified controller’s ability to “steer” engine performance towards high/low NOx and CO\textsubscript{2}
 - Control is stable
 - Torque is maintained
 - CO\textsubscript{2} vs. NOx trade-off benefit
Summary & Next Steps

- Fully model-based, practically-mapless engine control concept is viable

- Main limitations of the approach
 - Large amount of transient engine data required
 - Vehicle-to-vehicle variability
 - Increased ECU computing power required

- Next Steps
 - Expand the use of the control technique to additional systems
 - Evaluate the controller over full transient cycles
 - Quantify the potential fuel economy benefits in a vehicle
Acknowledgements

- Department of Energy Headquarters
 - Gurpreet Singh
 - Roland Gravel

- National Energy Technology Laboratory
 - Carl Maronde
 - Jeffrey Kooser

- FEV, Inc.
 - John Zelasko
 - Roger VanSickle
 - Falk Beier