

High Efficiency Clean Combustion for Heavy-Duty Engine

Houshun Zhang, Yury Kalish, Marc Allain, Guangsheng Zhu, and Zhiping Han

August 6, 2008

Outline

- Program Overview
- Technical Details
 - Advanced Fuel Injection System
 - Combustion Optimization
 - Advanced Next Generation Control
- Summary

Program Objectives

- Explore advancements in engine combustion systems using high-efficiency clean combustion (HECC) techniques to minimize cylinder-out emissions while optimizing engine fuel economy
- Maximize thermal efficiency with integrated engine and DPF+SCR aftertreamtent system while meeting 2010 emission regulations
- Emphasis on Enabling Sub-system Technologies
 - Advanced combustion system technologies
 - Flexible, precise fuel injection
 - Air and EGR system technologies
 - Advanced multiple input multiple output control technologies

Example Operating Conditions

Over Truck Routes

System Development Approach

Integrated Analytical

Simulation Tools

Component Optimization

Daimler Trucks 4

Advanced Fuel Injection System

- Advanced fuel injection with full flexibility of injection events was procured and being evaluated.
 - System combines unit injectors and an accumulator rail
 - Medium pressure rail (up to 1000 bar) to provide early / late injection events
 - Unit injector to provide high pressure short duration main injection
 - Combined rail / unit injector operation for boot shape and close pilot / post injections
 - Unit injectors to act as rail pressure source (no rail pump required)

Daimler Trucks 6

Variable Nozzle Technology

- Introduced variable fuel injection technology into the program with high potential to significantly enhance high efficiency clean combustion.
- Great potentials have been demonstrated analytically throughout different speeds and loads
 - Significant fuel economy improvement, ranging from 5% to 12%
 - Substantial NOx and soot emission reductions, ranging from 50% to 90%
- Variable nozzles have been procured, and assembled with advanced fuel injection system.
- Flow bench tests are underway, and the engine tests will follow soon.

Micro-Variable Circular Orifice (MVCO)

First phase injection with conical spray and narrow spray angle produced by MVCO Nozzle Second phase injection with multi-jet spray and wide spray angle produced by MVCO Nozzle

QLC <u>QuantLogic Corp.</u>

Advanced Combustion Development

- Genetic combustion optimization
 - Fuel injection and piston bowl optimization
- New combustion concept exploration
 - Multi-mode combustion with advanced fuel injection system and variable nozzle technology
- Real time combustion control
 - In-cylinder pressure sensor
 - ionization sensors

DETROIT DIESEL

Specific Combustion Optimization on PCCI

The objective is to achieve similar soot and NOx emissions to that of the baseline case but with a \sim 10% fuel consumption improvement

run	Soot	NOx	gisfc	Fuel economy improvement
	g/kgf	g/kgf	g/kW-hr	%
base	0.23	3.24	233.3	-
1	0.12	5.27	201.1	13.8
2	0.41	7.76	223.0	4.4
11	0.33	1.98	212.9	8.7
12	0.19	3.72	208.1	10.8

10.8% fuel economy improvement was obtained while maintaining the same emission level as baseline.

Engine testing is just under way and preliminary results show 5.03% BSFC improvement. More tests will be reported soon.

Next Generation Model-Based Controller

Application of Transient Calibration Optimization to FTP Cycle

4% Thermal Efficiency Improvement

With Next Generation Model Based Controller

Each point marker designates one calibration FTP set point

Simultaneously 1.20 1.10 200 ∞ 1.00 PM - normalized 0.90 0.80 0.70 0.60 0.50 0.60 0.70 0.80 1.00 1.10 1.20 0.90 NOx - normalized

And 15% NOx and 25% PM Reduction

Daimler Trucks 12

Transient Calibration Optimization (FTP Tests)

DETROIT DIESEL

Next Generation Model Based Controller breaks traditional BSFC -NOx Trade-off Curve toward more Fuel Economy Improvement

Barriers/Challenges

Technical challenges with variable nozzle technology are enormous

- Needle lift control
- High sensitivity to needle position design may not be robust to tolerances
- Very high precision required in manufacture

Combustion mode transition

- Need robust controls methodologies
- Next generation model based control
 - Computational power and speed in engine control unit
 - Model integration complexity with real time engine, aftertreatment, and emission model that must be adaptive, robust, and precision

Summary

- Program is progressing well and aggressively. It is toward meeting the program objective with 10% thermal efficiency improvement by 2009.
- Identified key enabling technologies with high potential returns
 - Advanced fuel injection system coupled with variable fuel injection nozzle
 - Genetic combustion system optimization
 - Transient control optimization
- Significant benefits with advanced fuel injection system and variable nozzle technology have been demonstrated. A new combustion strategy covering the entire operating range is emerging.

Acknowledgements

- Department of Energy Headquarters
 - Gurpreet Singh
 - Roland Gravel
- National Energy Technology Laboratory
 - Carl Maronde
 - Jeffrey Kooser