Optical-Engine Study of a
Low-Temperature Combustion Strategy
Employing a Dual-Row, Narrow-Included-Angle Nozzle
and Early, Direct Injection of Diesel Fuel

Charles J. Mueller
Sandia National Laboratories

Glen C. Martin, David M. Milam, Michael S. Radovanovic, and Christopher R. Gehrke
Caterpillar Inc.

Research Supported by US Dept. of Energy
Program Managers: Ralph Nine and Kevin Stork
Technology Development Manager: Roland Gravel
Team Leader: Gurpreet Singh

14th Diesel Engine-Efficiency and Emissions Research (DEER) Conference
Hyatt Regency Dearborn Hotel, Dearborn, MI
August 6, 2008
Motivation

- Early direct-injection (DI), high-efficiency clean-combustion (HECC) strategies are attractive at moderate loads.

- Why do emissions increase for early-DI strategies that use diesel fuel, when they don’t for a gasoline-like fuel (iso-octane)?

Source: Hwang, Dec, and Sjöberg, SAE 2007-01-4130, Fig. 10
Experimental Approach:

Use Sandia Compression-ignition Optical Research Engine (SCORE)

<table>
<thead>
<tr>
<th>Research engine</th>
<th>1-cyl. Cat 3176</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injector type</td>
<td>Caterpillar HEUI® A</td>
</tr>
<tr>
<td>Injector model</td>
<td>HIA-450</td>
</tr>
<tr>
<td>Bore</td>
<td>125 mm</td>
</tr>
<tr>
<td>Stroke</td>
<td>140 mm</td>
</tr>
<tr>
<td>Piston bowl diameter</td>
<td>90 mm</td>
</tr>
<tr>
<td>Piston bowl depth</td>
<td>16.4 mm</td>
</tr>
<tr>
<td>Squish height</td>
<td>1.5 mm</td>
</tr>
<tr>
<td>Swirl ratio</td>
<td>0.59</td>
</tr>
<tr>
<td>Displacement per cyl.</td>
<td>1.72 liters</td>
</tr>
<tr>
<td>SCORE comp. ratio</td>
<td>11.8:1</td>
</tr>
</tbody>
</table>

- **15-hole, dual-row nozzle**
 - All orifices 103 μm in diameter
 - 10 orifices in outer row
 - 70° included angle
 - 5 orifices in inner row
 - 35° included angle
High-Speed Optical Diagnostics

- **Spray visualization**
 - Mie (elastic) scattering from liquid-fuel droplets
 - Illumination from high-intensity discharge lamps

- **Natural luminosity (NL)**
 - Signal dominated by incandescence from hot soot

- **Spatially integrated natural luminosity (SINL)**
 - SINL is time-resolved measure of NL
 - Single-element detector
 - Sensitive from 400 – 1070 nm

- **...plus apparent heat release rate (AHRR) and emissions**
Operating Conditions – Baseline

- Baseline condition
 - Constant parameters
 - Speed = 1200 rpm
 - Fuel = #2 ULSD, 45.9 cetane, 34.8 wt% aromatics
 - Swept parameters
 - Start of injection (SOI) = -39.5°
 - Load = 4.82 bar gross IMEP
 - Equivalence ratio = 0.39
 - EGR = 50%
 - Intake temperature = 42 °C
 - Intake pressure = 1.42 bar (abs.)
 - Injection pressure = 142 MPa

- EGR simulated using N₂ and CO₂ addition to match X_{O₂} and c_p of intake mixture with real EGR
Operating Conditions – Sweep Matrix

<table>
<thead>
<tr>
<th></th>
<th>Injection Timing [°ATDC]</th>
<th>Injection Pressure [MPa]</th>
<th>(\Phi) [-]</th>
<th>EGR [%]</th>
<th>Intake Temp. [°C]</th>
<th>Load gIMEP [bar]</th>
<th>Boost [bar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Condition</td>
<td>-39.5</td>
<td>142</td>
<td>0.39</td>
<td>50</td>
<td>42</td>
<td>4.82</td>
<td>1.418</td>
</tr>
<tr>
<td>Injection Timing Sweep</td>
<td>-69.5 to -29.5</td>
<td>142</td>
<td>0.39</td>
<td>46.6 to 50.2</td>
<td>42</td>
<td>4.82</td>
<td>1.418</td>
</tr>
<tr>
<td>Injection Pressure Sweep</td>
<td>-36.3 to -39.5</td>
<td>47, 95, 142</td>
<td>0.39</td>
<td>50</td>
<td>42</td>
<td>4.82</td>
<td>1.418</td>
</tr>
<tr>
<td>Equivalence Ratio and Boost Sweep</td>
<td>-39.5</td>
<td>142</td>
<td>0.24 to 0.58</td>
<td>50</td>
<td>42</td>
<td>4.82</td>
<td>2.060 to 1.132</td>
</tr>
<tr>
<td>EGR and Boost Sweep</td>
<td>-39.5</td>
<td>142</td>
<td>0.39</td>
<td>30 to 70</td>
<td>42</td>
<td>4.82</td>
<td>1.188 to 1.949</td>
</tr>
<tr>
<td>Intake Temperature and Boost Sweep</td>
<td>-39.5</td>
<td>142</td>
<td>0.39</td>
<td>32 to 62</td>
<td>4.82</td>
<td>1.373 to 1.508</td>
<td></td>
</tr>
<tr>
<td>Intake Temperature and Equivalence Ratio</td>
<td>-39.5</td>
<td>142</td>
<td>0.39 to 0.41</td>
<td>50</td>
<td>32 to 62</td>
<td>4.82</td>
<td>1.418</td>
</tr>
<tr>
<td>Load and Boost Sweep</td>
<td>-39.5</td>
<td>142</td>
<td>0.39</td>
<td>50</td>
<td>42</td>
<td>3.82 to 5.83</td>
<td>1.203 to 1.629</td>
</tr>
</tbody>
</table>
Early Injections Lead to Liquid Fuel Impinging on Piston Top

SOI = -69.5° ATDC

SOI = -29.5° ATDC

Absolute gross indicated efficiency is ~3% lower than for conventional operation at a similar load
Sometimes Pool Fires Are Observed in Areas Where Liquid Fuel Impinged...

SOI = -69.5° ATDC

Cylinder-Window View

Piston-Window View
...But Sometimes Little or No Evidence of Pool Fires Is Observed

SOI = -39.5° ATDC

Cylinder-Window View

Piston-Window View

Bottom of piston bowl

Reflection from top of bowl-rim window

ID of piston bowl
Pool-Fire Activity (i.e., Peak SINL) Is Separate from the Main Heat-Release Event

Main heat-release event produces little SINL, and peak SINL occurs after majority of heat-release has ended.
Pool-Fire Activity (i.e., Peak SINL) Is Correlated with Emissions

Data from all two-parameter sweeps
A Hypothesis to Explain How Fuel Films, Emissions, and Efficiency Are Linked

- If a bright, luminous pool fire is formed:
 - Fuel-rich regions are producing soot
 - Near-stoichiometric regions around rich regions are producing NO\(_x\)
 - Radiative coupling between flame and fuel-film causes film to more-completely vaporize and burn, yielding lower HC and CO emissions

- If a bright, luminous pool fire is not formed:
 - Hot soot is not being produced in locally richer regions
 - NO\(_x\) may or may not be produced in non-luminous regions, since don’t expect to see soot luminosity from regions with \(\phi < 2\)
 - Lack of radiative heating from flame means incomplete fuel-film vaporization and higher HC and CO emissions

- Non-optimal phasing, incomplete combustion \(\rightarrow\) lower efficiency

- Either way, fuel films lead to problems with emissions and efficiency!
Summary

- Liquid-fuel impingement on in-cylinder surfaces can lead to formation of fuel films
 - Incomplete combustion → lower efficiency
 - Pool fires

- Fuel films can have a strong effect on emissions
 - If they ignite, stoichiometric-to-rich combustion can produce excessive soot and NO\textsubscript{x}
 - If they don’t fully react, can produce elevated HC and CO emissions

- Looking on the bright side
 - Since significant emissions and fuel-consumption increases come from fuel films, eliminating them could enable much-improved performance
 - In-cylinder charge motion and/or a higher-volatility fuel could help

For more information, see SAE 2008-01-2400