

Biodiesel ASTM Update and Future Technical Needs

<u>Steve Howell</u> <u>Technical Director</u> <u>National Biodiesel Board</u>

- ASTM D6751 is the approved standard for B100 for blending up to B20 in the US
 - ASTM has approved D6751 for B100 use only for up to B20 in the final blend
 - Higher blends upon consultation with the OEM
- ◆ D6751 was not designed for higher levels than B20
- European EN14214 specs are for neat B100 use
- This is why D6751 has different limits for some properties compared to the European Specs
 - i.e. D6751 stability is 3 hours, EN14214 is 6 hours

- To pass blended specs that provide 'fit for purpose' fuel, changes to B100 were needed so no changes would be needed for B5 in D975, D396:
 - Lowered acid number from 0.8 to 0.5
 - Add stability parameter for B100 targeted for acceptable B20 and B5 performance
 - Added limits for calcium and magnesium
 - Added limits for sodium and potassium
 - Most recently: Add filtration test to pick up minor contaminants
- Changes to D6751 have been the major hold up to passing the blended fuel specs
 - The actual values for the finished blended fuel have been set for some time and have not changed for several years.

Cold Soak Filtration Test (CSFT)

- Purpose is to insure cloud point is still an accurate measurement for B20 and lower blends
 - This test has nothing to do with the actual cold flow properties of the B100 or its blends
 - Results are independent of the cloud point of the B100
 - The test has no meaning for blends of biodiesel and diesel fuel
- 300 ml of B100, chilled to 40F for 16 hours, allowed to warm to room temp, filtered under vacuum using 0.7 micron glass fiber filter with stainless steel support

Cold Soak Filtration Test (CSFT)

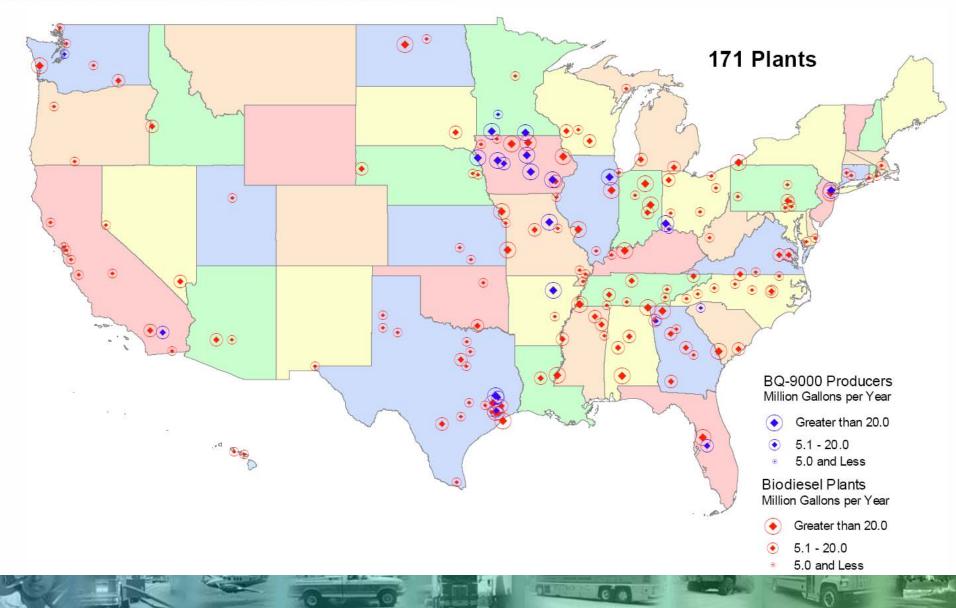
- Ballot to add the CSFT to D6751 passed D02
- Test method in mandatory annex—same method that was balloted in December 2007
- NO OTHER VARIATIONS OR PREVIOUS VERSIONS OF THE TEST METHOD ARE ALLOWED
- Two limits:
 - 360 seconds for all times of the year
 - 200 seconds if the seller claims the B100 is fit for purpose to use in blends in temperatures below -12 C (~10 F)

ASTM Current Status

- B5 ballot into the petrodiesel specifications: D975, D396 (heating oil) passed D02 main.
 - No changes to properties or analytical methods in table 1 of D975 and D396
 - B100 must meet D6751 prior to blending
 - Ballot was linked to the satisfactory resolution of new filterability test in D6751

- B6 to B20 for on/off road diesel engines will be a stand alone specification, passed D02 main
 - New ASTM number when published, D7467
- Designed so that if B100 meets D6751 and petrodiesel meets D975, B6 to B20 will meet its specification:
 - Widest of #1/#2 specifications
 - Allow T-90 to be 5 degrees C higher
 - Add stability (induction period 6 hours min.)
 - Add acid number of 0.3 maximum
- Ballot was linked to the satisfactory resolution of the new filterability test in D6751

- All D02 main ballots go through ASTM COS review and ASTM Editorial after voting
- Committee on Standards: review handling of negatives and allows for appeal by negative voter if improperly handled
- ASTM Editorial: ensure proper form/style
- Specs officially 'in effect' from ASTM after COS and Editorial review, and publishing on the ASTM web site


Future Technical Needs For Biodiesel

June 2008

Commercial Biodiesel Production Plants (Jan. 25, 2008)

Biodiesel Future

- Biodiesel is a low cost production method for a compatible liquid for diesel fuel
- The oxygen (11%) in biodiesel provides emissions, biodegradability, and lubricity advantages vs. non-oxygen fuels
- Trade off between cold flow and stability are based on the level of saturation
 - In general, higher saturation gives higher stability but worse cold flow properties
 - This is true for biodiesel and biomass diesel

Biodiesel Future

Biodiesel: Food AND Fuel

- Heightened interest in growing both food and fuel
- Biodiesel is produced from oils and fats which are a minor by-product of producing food:
 - Soybeans are 80% high protein meal, 20% soy oil
 - Animals (hogs, cattle, chicken) not raised for fat content
 - People don't fry more foods to get used frying oil
- Current biodiesel on traditional land has very positive energy and CO2 life cycle numbers
- Future oils and fats will be substantial, and will come from sustainable sources (i.e. higher productivity, algae, etc.)

Future Technical Needs

 The biodiesel industry has worked hard to build a solid technical basis for the fuel with petroleum and engine interests

- Most biodiesel technical work is now done cooperatively through committees that involve the traditional fuel companies, engine interests (fuel injection, engine, vehicle), and biodiesel companies
- This type of cooperative relationship is critical to continued biodiesel success.

DIESEL Oct 2007 Biodiesel Workshop -

<u>Priority</u>	Technical Areas of Highest Priority for 2008	<u># Votes</u>
1	Biodiesel Standards (B100 & Blends)	106
2	Biodiesel Quality Enforcement	<mark>63</mark>
3	Biodiesel Stability	61
4	New Faster, Better Test Methods	58
5	2007 / 2010 Engine & After Treatment and Durability	57
6	Low Cost / High Volume Oils	55
7	Emissions	50
8	Life cycle benefits, compare to other models, update, feedstocks, land use changes, ghg not just co2, to include petroleum displacement, sustainability	49
9	Boiler and Heating Oil Research	21

9 Boller and Heating Oli Research

= }

Future Technical Needs

- Significant technical work to verify performance on new emissions technologies:
 - Engine and Fuel System Durability
 - \$5MM per year for 5 years in Energy Bill, not appropriated yet
 - It needs to be!
 - After-treatment
 - Benefits (less PM, lower regeneration temperatures)
 - Verification of specifications (i.e. phosphorous, metals)
 - Taking advantage of biodiesel attributes through optimization of engines on B20 and lower blends with fuel blend sensor
 - FEV work showing lower NOx with optimized B20 engine than possible with hydrocarbon based diesel
 - Potential for fuel savings by not regenerating as often

Future Technical Needs

- Continued work on enforcing D6751 and continuous improvement on D6751
 - BQ-9000 program, producer component
 - NCWM, IRS, EPA enforcement
 - PPM level contaminants can cause problems in both biodiesel and other renewable diesels
 - Low use applications and long term (i.e. years) stability
- Implement and enforce biodiesel blend specs
 - BQ-9000 program, blender/distributor component
 - Blend accuracy
 - NCWM, IRS, EPA enforcement
- Education of mechanics and dealers
- Education of fuel distributors and blenders