US Tier 2 Bin 2 Diesel Research Progress

Brian Cooper
Ricardo plc
Light Duty Diesel technology will continue to improve and meet long term emissions and fuel economy demands

- Tier 2 Bin 2 requires major advances in Diesel engine NMOG and NOx control. These challenges are driving innovation.

- Highly Pre-mixed Cool Combustion (HPCC) enabled by air system technology can achieve 85-90% NOx reduction relative to Euro4.
 - NMOG, transient combustion noise, robustness and durability issues are being targeted in an integrated approach.

- The optimum balance between engine and aftertreatment technology is being investigated to maximise fuel economy.

- Low NOx combustion technology will be fundamental to global Diesel product strategies and CO2 reduction.
Light Duty Diesel technology will continue to improve and meet long term emissions and fuel economy demands

- Tier 2 Bin 2 requires major advances in Diesel engine NMOG and NOx control. These challenges are driving innovation.

- Highly Pre-mixed Cool Combustion (HPCC) enabled by air system technology can achieve 85-90% NOx reduction relative to Euro4
 - NMOG, transient combustion noise, robustness and durability issues are being targeted in an integrated approach.

- The optimum balance between engine and aftertreatment technology is being investigated to maximise fuel economy.

- Low NOx combustion technology will be fundamental to global Diesel product strategies and CO₂ reduction.
Tier 2 Bin 2 is a major challenge for Diesel and must be achieved with improved economy and realistic cost

Approximate Relative Emissions Challenge
Eu4~6 T2B5~B2

- NOx
- HC/NMOG
- CO
- PM

Typical T2B5
Current Approach

T2B2 Research Approach

Engine
Aftertreatment

- Eu4
- Eu5
- Eu6
- T2B5
- T2B2
Light Duty Diesel technology will continue to improve and meet long term emissions and fuel economy demands

- Tier 2 Bin 2 requires major advances in Diesel engine NMOG and NOx control. These challenges are driving innovation.

- Highly Pre-mixed Cool Combustion (HPCC) enabled by air system technology can achieve 85-90% NOx reduction relative to Euro4
 - NMOG, transient combustion noise, robustness and durability issues are being targeted in an integrated approach.

- The optimum balance between engine and aftertreatment technology is being investigated to maximise fuel economy.

- Low NOx combustion technology will be fundamental to global Diesel product strategies and CO₂ reduction.
Roadmap of technologies to promote lower emissions while enhancing performance and drivability

ACTION = Advanced Combustion Technology for Improved engine-Out NOx

<table>
<thead>
<tr>
<th>AIR/EGR SYSTEM</th>
<th>LEVEL 2/2+</th>
<th>LEVEL 3</th>
<th>LEVEL 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable swirl</td>
<td>Advanced EGR</td>
<td>Advanced turbo concepts</td>
<td>Assisted boosting</td>
</tr>
<tr>
<td>Advanced EGR</td>
<td>EGR bypass</td>
<td>Low Pressure EGR</td>
<td>Variable valve actuation?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMBUSTION SYSTEM</td>
<td>16-16.5 CR</td>
<td>15.5-16 CR</td>
<td>Variable nozzle?</td>
</tr>
<tr>
<td>1600-1800 bar FIE</td>
<td>>1800 bar FIE</td>
<td>>2000 bar FIE</td>
<td></td>
</tr>
<tr>
<td>CONTROL SYSTEM</td>
<td>Lambda sensor</td>
<td>Combustion control (CPEMS)</td>
<td>Model based control (WAVE®RT)</td>
</tr>
<tr>
<td>EGR temperature control</td>
<td>Virtual sensors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPABILITY</td>
<td>Euro 5 PC</td>
<td>T2 Bin 5 LDV</td>
<td>Bin5 LDT4</td>
</tr>
<tr>
<td>Euro 6 PC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2 Bin 8 FTP LDV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Highly Pre-mixed Cool Combustion (HPCC)

Charge Oxygen Concentration (%) vs NOx (g/kWh)

- Euro 4
- Level 2
- Level 3

Load (bar BMEP) vs Speed (rev/min)

- Level 3 - O₂ Concentration Map
- Level 2 - O₂ Concentration Map

Numbers indicate percentage of fuel injected before start of combustion of the main injection

REFERENCE
SAE 2006-01-1145
ACTION Level 3 technology enables lower NOx and improved fuel economy

- 80-90% NOx reduction with 3-5% fuel economy gain is possible
- Low pressure EGR solution offers advantage over US06 drive cycle
Key T2B2 challenges are being targeted by technology integration

Boost/EGR
- High efficiency air and EGR system
 - Low pumping losses
 - Enhanced performance & drivability

Combustion
- HPCC combustion system
 - Low soot and good efficiency at low lambda
 - Enhanced performance

Aftertreatment
- HC control:
 - Fast light-off
 - HC conversion
- NOx control:
 - Low temp conversion
 - Low NOx DPF regen.

Control Strategy
- Advanced air path control
- CPEMS closed loop combustion control
Light Duty Diesel technology will continue to improve and meet long term emissions and fuel economy demands

- Tier 2 Bin 2 requires major advances in Diesel engine NMOG and NOx control. These challenges are driving innovation.

- Highly Pre-mixed Cool Combustion (HPCC) enabled by air system technology can achieve 85-90% NOx reduction relative to Euro4.
 - NMOG, transient combustion noise, robustness and durability issues are being targeted in an integrated approach.

- The optimum balance between engine and aftertreatment technology is being investigated to maximise fuel economy.

- Low NOx combustion technology will be fundamental to global Diesel product strategies and CO₂ reduction.
Research is now examining the optimum engine and aftertreatment balance for best fuel economy at T2B2.
Light Duty Diesel technology will continue to improve and meet long term emissions and fuel economy demands

- Tier 2 Bin 2 requires major advances in Diesel engine NMOG and NOx control. These challenges are driving innovation.

- Highly Pre-mixed Cool Combustion (HPCC) enabled by air system technology can achieve 85-90% NOx reduction relative to Euro4.
 - NMOG, transient combustion noise, robustness and durability issues are being targeted in an integrated approach.

- The optimum balance between engine and aftertreatment technology is being investigated to maximise fuel economy.

- Low NOx combustion technology will be fundamental to global Diesel product strategies and CO₂ reduction.
Engine out NOx control will be fundamental to global Diesel product strategies and CO₂ reduction
Low NOx technology will enable fuel economy gains through reduced operating speed or engine downsizing.

Brake Specific NOx Comparison - Constant Power Condition of 30kW

ACTION Level 3 Engine Brake Specific CO2

Improving Fuel Economy

5th to 6th rear at 100 kph cruise condition

FE gain by downsizing

FE gain by up shifting
Light Duty Diesel technology will continue to improve and meet long term emissions and fuel economy demands

- Tier 2 Bin 2 requires major advances in Diesel engine NMOG and NOx control. These challenges are driving innovation.

- Highly Pre-mixed Cool Combustion (HPCC) enabled by air system technology can achieve 85-90% NOx reduction relative to Euro4
 - NMOG, transient combustion noise, robustness and durability issues are being targeted in an integrated approach.

- The optimum balance between engine and aftertreatment technology is being investigated to maximise fuel economy.

- Low NOx combustion technology will be fundamental to global Diesel product strategies and CO₂ reduction.