

Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions

Guangsheng Zhu, Houshun Zhang, Yury Kalish, and Rakesh Aneja

August 13, 2007

Outline

- Project Overview
- Technical Details
 - Fuel Injection System
 - Combustion
 - Controls
- Future Work
- Challenges
- Conclusions

Program Objectives

 Explore Advancements in Engine Combustion Systems Using High-Efficiency Clean Combustion (HECC) Techniques to Minimize Cylinderout Emissions

- Emphasis on Enabling Sub-system Technologies
 - Advanced Combustion System Technologies
 - Flexible, Precise Fuel Injection
 - Air and EGR System Technologies
 - Advanced Multiple Input Multiple Output control technologies

Multi-cylinder Test-bed

Program Development Approach:

Potential for Real Contribution to Energy Savings a Key Assessment Criteria

Integration of aftertreatment systems

Evaluation on truck operation for overall technology assessment and refinement

Selecting road-load operating conditions

Thermal Efficiency

Emission compliance

Integrated Analytical Simulation Tools

Experimental validation and downselection of advanced engine technologies

Testing

Thermal Efficiency Roadmap And Accomplishments - Foundation for the Current Work

Implementations for the Current Effort

- Most Significant Key Enabling Technologies for Achieving Program
 Objective Were Initiated and Are Being Effectively Implemented
 - Variable Fuel Injector Nozzle Coupled with The Most Advanced Fuel Injection System
 - Combustion System Optimizations
 - Transient Control Optimization

Outline

- Project Overview
- Technical Details
 - Fuel Injection System
 - Combustion
 - Controls
- Future Work
- Challenges
- Conclusions

Micro-Variable Circular Orifice (MVCO)

 Introduced variable fuel injection technology into the program with high potential to significantly enhance high efficiency clean combustion.

- The moving needle and nozzle body generate a micro-variable circular orifice (MVCO), which is equivalent to a 6 50 variable micro-hole nozzle.
- It can generate a conical spray only or mixed-mode conical-multi-jet spray patterns to meet the needs of different engine operating conditions.

Dual-mode PCCI Combustion Concept (A25)

- New combustion and injection strategy is emerging

Performance And Emissions Improvement with MVCO Technology

	BSFC	NOx	Soot	CO	HC
Case	[g/kW·hr]	[g/hp·hr]	[mg/m3]	[g/hp·hr]	[g/hp·hr]
Baseline	222	1.592	0.767	0.47	0.071
MVCO (Dual Injection Mode)	195.2	0.07	0.349	0.473	0.189
Improvement	12%	96%	54%	-1%	-166%

A25 CASE:

- 12% BSFC Improvement
- Significant reductions in both NOx (96%) and soot (54%)
- Only small increase in CO, and HC is not quite significant as opposed to other HCCI/LTC technologies

Innovative System Optimization Methodology Emerging

 New Approach Is Able to Significantly Shorten Development Cycle in Achieving Program Objectives by Combining Sophisticated Genetic Optimization Scheme with a Well Planned Design of Experiment,

1st Generation of Design Recommendations

Transient Calibration Optimization Program

Trade-off of BSFC and NOx Emissions Using Integrated Control Development

BSFC kg/kW-hr

Each point marker designates one calibration FTP set point

NOx g/hp-hr

- Conduct Large Scale Of Offline Control Optimizations over A Hundred Set Points
- Validate Selective Calibration Set Points in Test Cells Based on The Best Possible Offline Optimization Results
- Derive Clear-cut Trade-off Between Key Parameters (NOx, PM, And BSFC)
- Obtain Significant Time and Resource Saving from Traditional Experiments

Future Work

- Variable Injection Nozzle Technology
- Advanced Next Generation Fuel Injection System
- Steady-state Advanced Combustion Development
- Transient Combustion and Control Development
- Integrated System Controls Development

Challenges

- Significant Development Still Required for Viable Strategies
 - Advanced Fuel Injection System Integration with Variable Nozzle Injector
 - Combustion Mode Transition
 - Application of HCCI to High Loads While Limiting Hydrocarbon Spike and High Fuel Economy Penalty
 - Sensors, Controls and Calibration Techniques
 - Minimization of System Variability for Reduced NOx Margin
 - Tailoring Engine-out Chemical and Thermal Boundary Conditions for The Optimized Performance of Integrated Engine and Aftertreatment System

Summary

- Significant Benefits in Both Fuel Economy And Emissions Are Obtained by Implementing Key Enabling Technologies
 - Variable Fuel Injection Nozzle Coupled with Advanced Fuel Injection System
 - Genetic Combustion System Optimization
 - Transient Control Optimization
- Integrated Engineering Methodologies Enabled by Analytical Tools are Critical to Develop and Validate the Technical Roadmap to Achieve Thermal Efficiency and Reduce Emissions Goals

Acknowledgements

- Department of Energy Headquarters
 - Gurpreet Singh
 - Roland Gravel
- National Energy Technology Laboratory
 - Carl Maronde
 - Jeffrey Kooser