

Diesel Fuel Economy and CO₂ Challenge Poster P-29

Mark Kuhn

Director – Light Duty Diesel Product Group

Ricardo

Powertrain improvements generally most cost-effective – New gasoline technologies close gap with diesel – Hybrid expensive

- Cost of weight reduction higher than powertrain improvements
 10% reduction in weight delivers
 5% cycle fuel economy
- Improvements in gasoline technology will close gap with diesel
- Hybrid systems expensive less cost effective

Hybrid will have high cost impact. Opportunity exists for intermediate solution with minimum technology application

Production Cost of Fuel Economy: C Class PC

Comparison with Other Advanced Technology Vehicles shows Efficient-C has Class Leading Powertrain Efficiency

Energy requirement for drive cycle (mass, drag, rolling loss) (kJ/km)

The challenge for diesel is to meet future emissions at minimum cost without compromising fuel economy advantage

	Attributes							
New Diesel	MPG	CO ₂ Reduction	NOx Reduction	Particulate Reduction	Performance	Packaging	Cost	
Technologies		on	ion	_ ()	й			
2-Stage Turbo	+	+	+	+	++			
Advanced Single Turbo	+	+	+	+	+	+	-	
Enhanced EGR	-	-	++	-	-	-	-	
Low Temperature Combustion	-	-	++	+	1	1	-	
Closed-Loop Control	+	+	+	+	+	1	-	
DPF	-	-	+	+++	-	-	-	
SCR	1	1	+++	1	1			
Lean NOx Trap			++	1	1	-		

Engine technologies can enable emissions, fuel consumption and performance improvements

- New exhaust aftertreatment essential to meeting emissions requirements, especially in US
- DPF removes >95% of smoke and is now becoming standard in Europe and US

Total system must be optimized to meet fuel economy, emissions, and performance at lowest cost

Next steps for low CO₂ and low fuel consumption diesel engines

STAGE 2 STAGE 3 STAGE 4 STAGE 1 STAGE 5 STAGE 6 Design for reduced parasitic losses

Optimised Energy Management of Ancillary Systems

AMT/DCT Transmissions

RIGHTSIZING

STOP/START INTELLIGENT **ALTERNATOR**

MILD DOWNSIZING +ACTION/AIR SYSTEM **DEVELOPMENTS**

MILD DOWNSIZING + HYBRID

HEAVY DOWNSIZING + HYBRID

RADICAL CONCEPTS

STAGE1: Right-sizing

- Product line-up with appropriate engine size for each application
- Optimize engine and technology selection
 - Lower rated variants should apply smaller engines not just de-rate
- Stop upsizing
 - Use base engine technology to enhance performance rather than larger engine

STAGE 3: BOOST TECHNOLOGY

- Mild downsizing enabled with low NOx technology
- Technology enablers
 - Electrical supercharging
 - Flectrical assisted turbo
 - Mechanical supercharging
 - 2 stage boosting
 - Micro hybrid

STAGE 4-5: DOWNSIZED HYBRIDS

- Progressive application of hybridization to enable energy recovery and torque augmentation
- Heavy downsizing
 - Parallel application of improved energy management of engine and vehicle systems

STAGE 5: R&D TECHNOLOGY

- Plug-in hybrid
- Exhaust energy recovery
- Radical structures

- Advanced battery technology
- Plasma & fuel reformers

© Ricardo plc 2007

Ricardo Confidential

Case Study: Project Achievements

- 30% improvement in fuel consumption and CO2 emissions relative to current state-of-the-art diesel vehicle
 - 99g/km CO2 in Berlingo
 - 90g/km in C segment saloon
- Euro IV emissions over NEDC, plus addition of Particulate Filter

Diesel								
Full-Hybrid								
Performance (with half of maximum payload)								
171kph / 106mph								
13.4								
35.5								
4.6								
12.3								
NEDC Cycle								
3.7 l/100km, 76 mpg								
45%								
npg								
15%								
3.75 l/100km, 75 mpg								
30%								
ſ								

^{*} SOC neutral operation in each phase ** SOC neutral over combined cycle

- Uncompromised performance, comfort and interior space
- Zero Emissions operating mode for sensitive urban environments
- Estimated additional cost of £3,000 over conventional diesel vehicle

^{***} Fixed gear ratio for the reference vehicle. On the Efficient-C vehicle, a kick-down is included