Effect of Ambient Pressure on Diesel Spray Axial Velocity and Internal Structure

Alan Kastengren, Christopher Powell
Center for Transportation Research
Argonne National Laboratory

Kyoung-Su Im, Yujie Wang, and Jin Wang
Advanced Photon Source
Argonne National Laboratory

DOE FreedomCAR & Vehicle Technologies Program
Program Manager: Gupreet Singh
Good Understanding of Spray Structure is Important in Diesel Combustion

- Performance and emissions of diesel engines are closely tied to the spray from the injector
 - Excessive penetration → wall wetting → UHC emissions
 - Poor spray pattern → poor fuel-air mixing → increased emissions

- Two of the most important variables that effect spray behavior are injection pressure and ambient density
 - Penetration speed increased by higher injection pressure and lower ambient density
 - Cone angle seems to increase as ambient density increases
Current Spray Diagnostic Techniques Are Inadequate

- Most spray measurements are based on optical measurements
 - Adequate for measuring penetration speed
 - Can’t probe internal spray structure in dense regions
 - Often not quantitative, due to strong scattering effects
- There are important parameters these optical techniques can’t show
 - Mass distribution of fuel in the spray
 - Fuel velocity away from the leading edge
- Need a nonintrusive, quantitative technique to measure sprays
X-Rays Give a Quantitative Determination of Fuel Distribution

\[I = I_0 e^{-M \mu_M} \]

\[M = \frac{\ln(I_0 / I)}{\mu_M} \]

- \(I_0 \): Incident x-ray intensity
- \(I \): Measured x-ray intensity
- \(\mu_M \): Fuel absorption coefficient
- \(M \): Projected mass density, mass/area

Diagram:
- X-Ray Window
- Nitrogen (N\(_2\)) Flow
- Avalanche Photodiode
- Fuel Injector
- X-Y Slits: 30 \(\mu \text{m} \) (V) \(\times \) 200 \(\mu \text{m} \) (H)
- 8 KeV X-ray Beam

\[8 \text{ KeV X-ray Beam} \]

\[I_0 \]
Radiography Has Good Spatial and Time Resolution

- Resulting data: 2-D fuel mass distribution as a function of time
- Measurement range
 - 0.2 – 6.0 mm axial
 - -1.4 – 1.2 mm transverse
 - 2 ms of data
- Time step 3.68 μs
 - 0.07 CAD at 3000 rpm
Experiment Details

- Light-duty diesel common-rail injector: solenoid driven
- Axial single hole
 - Non-hydroground: r/D = 0.2
 - Orifice diameter 207 μm
 - L/D = 4.7
- Injection parameters
 - Injection pressure: 500 and 1000 bar
 - Injection duration: 1000 μs
 - Ambient gas: N₂ at room temperature
 - Ambient pressure: 5 bar and 20 bar
 - Liquid: Diesel calibration fluid with cerium additive
Spray Evolution for Different Ambient Densities, 1000 bar Injection Pressure

5 Bar N₂

20 Bar N₂
Spray Evolution for Different Injection Pressures, 5 Bar Ambient N₂

- **500 bar**
- **1000 bar**
Penetration Results

- Penetration of leading edge vs. time
- Increased ambient density reduces penetration speed
 - Not as much as accepted correlations indicate
- Lower injection pressure reduces penetration speed
 - More than expected
- Dynamics of injector opening are important to early penetration results
Previous Cone Angle Results

- Cone angle measurements help explain how the fuel mixes with the ambient gas
- Typically found by examining optical spray images
- X-ray radiography gives much more detail than optical measurements on the internal mass distribution
 - Based on a well-defined, quantitative measure of the fuel distribution
 - Can record cone angle as a function of time
Use of Radiography to Find Cone Angle
Cone Angle Changes Significantly with Time

- Define cone angle based on the mass distributions across the spray
- Time period of few hundred µs for cone angle to reach steady state
- Much smaller than typical optical cone angles
 - Examining spray core
 - Optical measurements show spray periphery
- Injection pressure has little effect on steady state cone angle
- Increased chamber pressure increases cone angle
Spray Axial Velocity Determination

- Axial velocity of spray in dense regions of the spray is not well known
- Axial velocity affects:
 - Penetration speed
 - Shear with ambient gas
 - Initialize spray breakup models
- Radiography can be used to determine the mass-averaged axial velocity of the spray for limited time spans near the beginning of the spray event
 - Due to quantitative measurement of mass as a function of time
 - Velocity measured as a function of both x and t
 - Limited to time just after the start of injection
Spray Axial Velocity Increases Over Several Microseconds

- Spray velocity vs. time near the nozzle exit (x = 0.2 mm)
- Both cases have same commanded injection timing and injection pressure (1000 bar)
- Seeing the transient in the spray velocity as the needle opens
- Same slope of injection velocity vs. t, but offset by 5-7 µs
- Bernoulli velocity = 474 m/s, so the needle is probably not yet fully open in either case
Spray Axial Velocity Is Strongly Affected by Ambient Density

- Spray velocity vs. x 33 µs after SOI
- Spray moves more slowly as distance from nozzle increases
 - Reduction in spray velocity due to aerodynamic interactions
 - Fluid at spray tip was injected at a slower velocity and so should move more slowly
- Difference in the two curves suggests that aerodynamic interactions slow the spray down more quickly with axial distance at higher ambient density
Future Work

- Continue to increase ambient pressure (density) of measurements
 - Further measurements at 30 bar ambient pressure in the near future
 - Near the ambient density in-cylinder near TDC
- Perform measurements on multi-hole nozzles
 - More representative of applied nozzle geometries
 - More parameters to explore: spray angle, VCO vs. minisac
- Further refine the velocity determination
 - Improve signal/noise of measurements
 - Attempt to incorporate mechanical ROI measurements with the x-ray density measurements
Future Work (cont.)

- Measurements on a heavy-duty HEUI injector
 - Full 6-hole production nozzle
 - Measurements in progress
- Measurements with biofuels
 - Completed initial measurements with a biodiesel blend fuel
- Dedicated transportation applications x-ray facility under construction
 - Limited access to x-ray source in the past
 - Dedicated facility will increase access to x-ray source
Future Work: Spray Axial Velocity Determination

\[m_{cv} (x > x_0, t) = - \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \rho(x_0, y, z, t) \cdot \nabla (x_0, y, z, t) \cdot \hat{n} \cdot dz \cdot dy \]

\[V_{ma} (x_0, t) = \frac{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \rho(x_0, y, z, t) \cdot V(x_0, y, z, t) \cdot dz \cdot dy}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \rho(x_0, y, z, t) \cdot dz \cdot dy} \]