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Background

z Vander Wal et al. published in Combustion & Flame in 2003 
and 2004 papers demonstrating: (1) differences in the structure 
within soot primary particles with benzene, ethanol and 
acetylene, and (2) particles with less ordered structure 
provided higher oxidative reactivity

z Observations of a soot nanostructure-oxidative reactivity 
relationship, reported at DEER 2004, evidenced by lower 
regeneration temperature for biodiesel (B20) blends and 
greater oxidation rates in TGA/DSC measurements as well as 
in on-engine DPF regeneration tests – what is the source of 
this difference in PM regeneration process and how do these 
soots behave during oxidation ?

z Extensive observations by Song and Boehman on variations in 
soot reactivity with alternative fuels leading to significantly 
different behavior for B100-derived soot, reported at DEER 
2005 and published in Combustion & Flame 2006
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Summary

z Previous observations on impacts of fuel formulation on 
diesel soot nanostructure and reactivity
Î Enhanced reactivity of B100 soot arises from surface oxygen 

functional groups and leads to a unique oxidation process
Î Diesel soot (from neat F-T diesel) follows a “shrinking core”

oxidation process
z How will EGR affect the formation and maturation of diesel 

soot?
Î Reduced temperature may affect the pool of soot precursors 

and alter the transition to an ordered and graphitic structure
Î Shift in gas composition from EGR (less O2 and more CO2) 

may exert chemical effects on the soot formation process
Î i.e., three effects may be present – thermal, chemical and 

dilution
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Fuel Composition Effects on Emissions
BP-325 and BP-325/B20 Test Fuels in a High Temp Regeneration
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Fuel Composition Effects on Emissions

BP-325 and BP-325/B20 Test Fuels in a High Temp Regeneration 
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Variation in Heavy Hydrocarbon Fraction 

Soot Morphology
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Structural Change During Early Stage of Oxidation (30min) 
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Summary

z B100 soot results in capsule type oxidation through internal 
burning, leading to a more ordered layer arrangement 

z FT100 soot undergoes surface burning and less layer 
rearrangement than B100 soot, even at 75% burn off 

z Early dramatic changes in inner structure and subsequent 
hollowing out of primary particles is a crucial factor in enhancing 
oxidation

z Surface reactivity involved in the early stage oxidation also 
seems to be responsible for a layer arrangement at later stage
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Approach for Examination of the Impact of EGR

z Examined the impact of EGR and “simulated EGR” in 
three different experimental systems
Î Co-flow laminar ethylene diffusion flame (a Santoro burner)
Î Yanmar LA70 5.8 hp DI naturally aspirated diesel engine
Î DDC/VM Motori 2.5L, 4 cyl, 16 valve, common rail diesel 

engine (referred to here as “DDC” engine)
z Focus in this presentation is on the 2.5L engine results
Î Impact of simulated EGR (dry CO2 injection in the intake)
Î Impact of 20% EGR
Î Examined soot structure, reactivity and oxidation kinetics
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 Impact of EGR on Soot Oxidation RateImpact of EGR on Soot Oxidation Rate
2.5L VM Motori/DDC Turbodiesel, 1600 rpm, 60 lb-ft2.5L VM Motori/DDC Turbodiesel, 1600 rpm, 60 lb-ft
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Changes in Active Surface Area with “EGR” 
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Changes in Active Surface Area with “EGR”

Soot 
Symbol 

Soot Origin Amount of Chemisorbed Oxygen 
Oxygen Uptake 
(g oxygen / g soot) 

ASAi 
(m2 / g) 

F0 Diffusion flame 
(0% CO2) 

0.00704 22.0 

F15 Diffusion flame 
(15% CO2) 

0.0144 45.0 

S0 Yanmar engine 
(0% CO2) 

0.00544 17.0 

S8 Yanmar engine 
(8% CO2) 

0.01056 33.0 

DDC0 DDC engine 
(0% EGR) 

0.00352 11.0 

DDC20 DDC engine 
(20% EGR) 

0.00832 26.0 
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reactivityreactivity

thermal > dilutionthermal > dilution 
>> chemical>> chemical

R
 

(1
/s

) 
s 

p

The Energy Institute 

reference Flame 
dilution effect 
dilution and chemical effect 
overall effect 

1.8 

1.6 
thermal 

1.4 

chemical 

1.2 

dilution 

1 

0.8 
0 0.2 0.4 0.6 0.8 1 

Conversion (X) 



The Energy Institute


Chemical Impact on Soot Oxidation RateChemical Impact on Soot Oxidation Rate
Comparing 1.76% COComparing 1.76% CO22 Addition vs. 26% EGRAddition vs. 26% EGR

Engine Speed 1500 rpm  0.07 

Engine Torque 50 Ib-ft. Baseline 

Start of Pilot Injection 0.06 1.76 % vol. CO2 
(ºBTDC) 31 26% vol. EGR 

0.05
Start of Main -3Injection(ºBTDC) 

R
 

(1
/m

in
) 

0.04

0% EGR 38


sp

Intake Gas Temperature CO2 0.03
36
Addition(ºC)


EGR 78 0.02


0% EGR 215
 0.01 
Exhaust Temperature CO2
(ºC) Addition 212 

0 
0 0.2 0.4 0.6 0.8 1EGR 241 Conversion (x) 

Chemical effect (from CO2) is small, confirming the flame results
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Soot Soot Origin d002 Lc La k R 
Symbol (nm) (nm) (nm) (layers) 

Structural F0 Diffusion flame 0.356 1.321 2.587 ~ 5 4.01 
(0% CO2)characteristics F15 Diffusion flame 0.358 1.183 2.049 ~ 4 3.01 

from the XRD (15% CO2) 

spectra Y0 Yanmar engine 0.355 1.237 3.030 ~ 5 4.68 
(0% CO2) 

Y8 Yanmar engine 0.357 1.213 2.477 ~ 4 4.22 
(8% CO2) 

DDC0 DDC engine 0.349 1.345 2.919 ~ 5 4.56 
(0% EGR) 

DDC20 DDC engine 0.351 1.207 2.526 ~ 4 3.97 
(20% EGR) 

Indicates more edge sites which means higher reactivity
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Raman Spectroscopy of Soot vs. Oxidation 
2.5L VM Motori/DDC Turbodiesel, 1600 rpm, 60 lb-ft 

Raman Spectroscopy of Soot vs. Oxidation
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EELS Analysis of Initial Soot Structure 
2.5L VM Motori/DDC Turbodiesel, 1600 rpm, 60 lb-ft 

EELS Analysis of Initial Soot Structure
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EELS Analysis of Oxidized Soot Structure
EELS Analysis of Oxidized Soot Structure
2.5L VM Motori/DDC Turbodiesel, 1600 rpm, 60 lb-ft2.5L VM Motori/DDC Turbodiesel, 1600 rpm, 60 lb-ft
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Presence of σ* peak in 0% EGR soot indicates graphitization of the 0% EGR soot during oxidation
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Gradual increase in D band and decrease in relative ratio of graphitic 
peak suggesting a tendency toward disordered state 

In
t.(

ar
b.

un
it)

 

17001600150014001300 
Raman Shift(cm

-1
) 

3% change 

28% change 

47% change 

Initial 

Ox30min (20% burn off) 

Ox50min (40% burn off) 

Ox105min (75% burn off) 

In
te

ns
ity

 (
e-

) 

320 310300 290280 270 
Energy Loss (eV) 

Initial 

75% burnoff 

20% burnoff 

Iπ/Ισ 

0.642 

0.610 

0.455 

0.594 

40% burnoff 

From previous analyses of FT100 soot (DEER 2005)




The Energy Institute


Electron Microscopy of Initial Soot Nanostructure


(a) BP15 Derived Soot (b) BP15 Derived Soot 
(Yanmar Engine) (Yanmar Engine) 

without CO2 with CO2 
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0%EGR – 0BO 0%EGR-25BO 0%EGR-75BO


Electron microscopy of DDC soot 
nanostructure as a function of burn off 

20%EGR – 0BO 20%EGR – 25BO 20%EGR – 75BO
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C. K. Westbrook


R. A. Dobbins R.H. Hurt




Both enhance reactivity 
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ConclusionsConclusions

• •	 EGR yields a less ordered initial soot nanostructure andEGR yields a less ordered initial soot nanostructure and 
enhanced reactivity due to a greater population of active sites forenhanced reactivity due to a greater population of active sites for 
oxygen chemisoprtionoxygen chemisoprtion

z• The effect of EGR and simulated EGR is consistent between sootThe effect of EGR and simulated EGR is consistent between soot 
samples from ethylene diffusion flames and various dieselsamples from ethylene diffusion flames and various diesel 
enginesengines

• •	 Raman spectroscopy alone may not be sufficient to clearlyRaman spectroscopy alone may not be sufficient to clearly 
identify trends in soot structure as a function of extent ofidentify trends in soot structure as a function of extent of 
oxidation, but a combination of XRD, Raman and EELS canoxidation, but a combination of XRD, Raman and EELS can 
provide a detailed picture of variations in soot nanostructureprovide a detailed picture of variations in soot nanostructure

• •	 (Not shown here but presented at the Fall 2006 Biodiesel(Not shown here but presented at the Fall 2006 Biodiesel 
Technical Workshop) The effectTechnical Workshop) s of EGR and Biodiesel on sootThe effects of EGR and Biodiesel on soot 
reactivity are additive!reactivity are additive! Both enhance reactivity



Impact of EGR on Diesel Soot Reactivity


Impacts of EGR on Soot Reactivity 
isothermal in Air @ 450 deg. C 

0 

20 

40 

60 

80 

100 

120 

0 200 400 600 800 

Time (min) 

W
ei

gh
t L

os
s 

(%
) 

BP15-40%EGR 
BP15-0%EGR 

Impacts of EGR on B40 Soot Reactivity 
isothermal in Air @ 450 deg. C 

0 

20 

40 

60 

80 

100 

120 

0 100 200 300 400 500 

Time (min) 

W
 ei

g h
 t 

L o
 ss

 (%
)

B40-0%EGR 
B40-40%EGR 

�Low Load Condition ( Indicated Pilot SOI: 25° BTDC, Indicated Main SOI: -2° BTDC) 

Shortest time to reach 50% 
burnoff for B40+EGR 

B40 and EGR Combined to Enhance of Soot Reactivity: B40+EGR > BP15+EGR ~ B40 > BP15 
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