Challenge # 2. Logistics and Compatibility with Existing Infrastructure Throughout Supply Chain

- 1. Production location
- 2. Transporting feedstocks and fuel
- 3. Aging of oil
- 4. Oil storage
- 5. Infrastructure compatible fuels
- 6. How do we identify low-cost options?

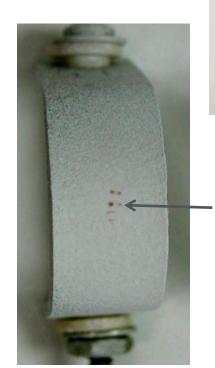
Logistics

System Component	Options	Variables	
Biomass Production	Forestry residues Energy crops Felling Chipping Baling	Harvesting window Production costs (location dependent)	
Pretreatment	Storage Chipping Drying Pelletising	Equipment capacity Capital and O&M Energy consumption (power, fuel, heat)	Load factor Dry matter loss Moisture loss
Transport	Truck Train Ship	Transport distance Speed Capacity Product weight Product volume	Capital and O&M Fuel consumption Load factor Transfer time & costs
Storage & Use	Above ground tanks Underground tanks	Capital and O&M Combustion efficiency	

Bio-oil Stabilization and Upgrading – Technical Challenges

- Fast pyrolysis derived bio-oil has many undesirable properties, the main technical barrier is the removal of oxygen:
 - High O content: 35-40%
 - High water content: 15-30 wt%
 - High acidity; pH = 2.5, TAN > 100 mg KOH/g oil
 - Unstable (phase separation, reactions)
 - Low HHV: 16-19 MJ/kg
 - Distillation residue: up to 50 wt %

Fast pyrolysis bio-oil


Energy & Fuels 18: 590-598 (2004)

Corrosion Cracking Of Samples Exposed In Bio-Oil

- Through wall cracks have been found in carbon steel and 2¼ Cr-1 Mo samples after exposure at 50°C
- Samples of 304L and 18 Cr 2
 Mo stainless steels developed
 crack indications after 750 hr at
 50°C
- Exposure of these samples is being continued to determine if more extensive cracking will develop

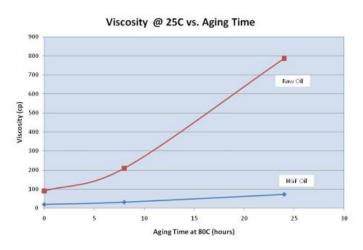
Through wall crack in carbon steel

Crack indications in stainless steel

Effect Of Raw Bio-Oil On Metallic Structural Materials

- Studies are being conducted to assess the extent of corrosion and cracking caused by bio-oil of metallic structural materials used in production, storage, transport and further processing of bio-oil
- Exposure of five potential structural materials in and above pyrolysis oil at 50°C and atmospheric pressure

Calculated corrosion rate (mm/yr) for samples exposed 500 hr in pyrolysis oil from 6 different sources


0.25 mm/yr is approximate limit for components expected to have a lifetime of no more than 10 years

- Biomass derived bio-oil can potentially be treated to make it compatible with common materials of construction
- Fully upgraded bio-oils (<0.5% O₂ content) showed no damage on any material
- Bio-oil conditioning is expected to add some cost but is not expected to be a show-stopper

Bio-Oil Conditioning

- Hot bio-oil vapor filtration
 - Lower ash and Group I metals
- High pressure thermal treatment
 - Can reduce oxygen by ~ 50% (dry basis)
- Low-severity hydrotreating
 - Can reduce bio-oil oxygen content to 5-8%

Accelerated aging at 80°C shows greater stability for filtrate

Ceramic Filter

0 Cycles 1500 Cycles

Flammability & Toxicity – Transportation Guidelines

Property	Potential Transportation Classification	Existing Test Methods	Limit Values	Results: Tox 21 Bio-Oil	Conclusion	Applicable Transportation Classification
Flammability	Class 3, Flammable Liquids	Flashpoint	≤60°C	This method does not apply to bio-oil	If the product does not sustain combustion, it does not need to be classified as flammable, regardless of the flashpoint result	N/A
		Sustained Combustibility	Does not sustain combustibility	Does not sustain combustibility		
Corrosivity	Class 8, Corrosive Substance	OECD Tests	Full thickness destruction of intact skin tissue	Slightly corrosive for rabbit, pH > 2.5	Probably slightly corrosive	Class 8, Packing Group III
		UN Test Manual	Metal corrosion of steel/aluminum	Not corrosive for steel. Corrosive for aluminum		
Toxicity	Class 6.1, Toxic Substances	Rat Testing	LD ₅₀ ≤300 mg/kg (oral)	LD ₅₀ >2000 mg/kg (oral, rat)	Not classified as toxic substance	N/A

Source: Oasmaa, A., et.al., 2012. "Guidelines for Transportation, Handling, and Use of fast Pyrolysis Bio-Oil. Part 1 – Flammability and Toxicity. Energy & Fuels. DOI:

Flammability & Toxicity – Transportation Guidelines (2)

Property	Potential Transportation Classification	Existing Test Methods	Limit Values	Results: Tox 21 Bio-Oil	Conclusion	Applicable Transportation Classification
Environmentally Hazardous	Class 9, Miscellaneous dangerous goods	Aquatic toxicity	10 mg/l	Algae 72 h: 100 mg/l	Not environmentally hazardous	N/A
		Bioaccumulation	10 mg/l	Daphnia 48 h: 100 mg/l		
		Degradation	OECD Tests	Biodegradability 28 days: 42%	Not classified as environmentally hazardous	

Source: Oasmaa, A., et.al., 2012. "Guidelines for Transportation, Handling, and Use of fast Pyrolysis Bio-Oil. Part 1 – Flammability and Toxicity. Energy & Fuels. DOI:

Standards & Recommended Practices

Partial list, primarily related to fuel storage and inspection thereof

- API Recommended Practices
 - 1007, 1604, 1615, 1621, 1626, 1627, 1628, 1629, 1631, 1632, 1635, 2003, 2005, 2610
- ASTM Standards
 - 1430, 1526, 1599, 1739, 1912, 1943, 1990
- NACE Standards
 - RP0169, RP0177, RP0178, RP0184, RP0285, RP0288, TM0101, TM0479
- Steel Tank Institute (STI) Standards
 - R892, R922, R972, P3, F894 ACT100, F961ACT100U
- NFPA Standards
 - 30, 30A, 326, 329, 385
- NLPA Standard 631
- UL Standards
 - 58, 142, 971, 1316, 1746

Challenge #2

Production Location

Feedstock Transportation Fuel Transportation

Fuel Storage & Handling