2013 DOE Vehicle Technologies Annual Merit Review
Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

PI: Greg Cesiel
Presenter: Sandra Monterosso
General Motors LLC
May 16, 2013

Project ID #: VSS018

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Project Start: 9/30/08
- Project End: 9/30/13
- Percent Complete: 88%

Barriers
- High cost of advanced technology
 - Drive cost down
- Infrastructure
 - Interface and interaction with electric power grid

Budget
- Project Funding: $67.1 M
 - DOE Share: $9.3 M
 - MEDC Share: $2 M
 - GM Share: $57.8 M

Partners
- Michigan Economic Development Corporation (MEDC) - Funding
- University of Michigan Advanced Battery Coalition for Drivetrains – Research

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Advanced Propulsion Strategy

- Improve Vehicle
 - Fuel Economy
 - and Emissions

- Displace Petroleum

- Hybrid-Electric Vehicles (including Plug-In HEV)

- IC Engine
 - and Transmission Improvements

- Hydrogen Fuel Cell-Electric

- Extended-Range Electric Vehicles (E-REV)

- Energy Diversity
 - Petroleum (Conventional and Alternative Sources)
 - Biofuels (Ethanol E85, Biodiesel)
 - Electricity (Conv. & Alternative Sources)
 - Hydrogen

Time
Objectives

- **Overall Program Objective**
 - Develop components and subsystems required for a plug-in hybrid electric vehicle (PHEV) and fully integrate them in a production-intent vehicle
 - Incorporate advanced lithium-ion battery technology
 - Feature high tech E85-capable Flex Fuel engine technology
 - Balance fuel economy, emissions, vehicle performance and battery life trade offs
 - Achieve battery cell performance and life requirements

- **Phase 1 – Development of Year 1 Mule Vehicles**
 - Achieve performance targets and proceed to Phase II
 - Hot weather, cold weather and altitude development
 - Engineering development
 - Charge depletion
 - Lithium-Ion battery development
 - Battery system integration
 - Charger development
 - Vehicle and Powertrain systems integration

- **Phase 2 – Development of Year 2 Integration Vehicles**
 - Merge developed components and subsystems with production intent hardware content
 - Produce and refine calibrations/software with Integration level vehicles
 - Engineering development
 - Charge depletion
 - Lithium-Ion battery development
 - Battery system integration
 - Charger development
 - Vehicle and Powertrain systems integration
Objectives

- **Phase 3 – Battery Thermal Development of Alpha Module**
 - Development of a new thermal management design to help maintain proper operating temperatures
 - Increase range
 - Improved reliability
 - More durable
 - Reduced complexity → more cost efficient design

- **Phase 4 – Battery Thermal Development of Mule Module**
 - Further development and refinement of the new thermal management design (thermal, vibration, aging, sealing evaluations)
Battery module concept work initiated with FEV, Inc and concept selection complete
 ◦ January 27, 2012

Onsite DOE Technical Reviews
 ◦ April 3, 2012
 ◦ September 18, 2012
 ◦ April 16, 2013
 ◦ September 2013

Battery module Proof of Concept
 ◦ Procurement – October 15, 2012
 ◦ Assembly complete – December 13, 2012

Battery module development testing complete
 ◦ June 15, 2013

Battery module design refinement complete
 ◦ July 31, 2013
Approach/Strategy

- **Hot Weather, Altitude and Cold Weather Development Trips**
- **Integration Vehicle Build**
 - Integration vehicles produced
 - Significant technology improvements
- **Argonne National Lab**
 - Vehicle dynamometer testing
- **Module Thermal Development**
 - Total temperature of the module
 - Internal heat temperature difference of the module
 - Maximum & minimum cell temperature
 - Module temperature at beginning & end of test
 - Heat capacity of the battery coolant
- **Module Vibration Development**
 - Verification of structural integrity of the module to vibration
- **Module Aging Evaluations**
 - Verification of brazing integrity after thermal aging of the:
 - Heat exchanger braze
 - Hose to outlet/inlet interface
 - Heat sink to outlet interface
- **Module Sealing Evaluations**
 - Determine brazing capability with coolant of the:
 - Heat exchanger braze
 - Hose to outlet/inlet interface
 - Heat sink to outlet interface
- **Thermal Cycling Life Assessment of Module Sealing System**
 - Braze integrity and hose interface capability after thermal life assessment
 - Overall braze integrity
 - Hose to outlet/inlet interface
 - Heat sink to outlet/inlet interface
• OnStar data collection was customized to meet DOE reporting requirements
• Virtual modeling and simulation of vehicle hardware completed
Technical Accomplishments & Progress

- Two physical builds completed producing vehicles for internal deployment at General Motors
 - 50+ vehicles built
 - 180,000+ miles driven

- Charge depleting (CD) and charge sustaining (CS) hybrid functionality has been successfully completed and demonstrated to the DOE

- Cold weather testing was performed and exceeded technical specification using both gasoline and alcohol fuels

- Analytical and physical development of available module designs, down-selected to one concept based on developed thermal design concepts

- Conducted detailed design and engineering analysis based on developed module performance metrics and manufacturability requirements
Technical Accomplishments & Progress

- Fabricated prototype components of down-selected concept for early development phase
- Assembled prototype modules/sections (different sizes) from these components to enable building 2 sections and 3 modules
- Testing soon to be initiated on prototypes for critical functions – thermal performance structural performance and manufacturability
- Analyze test results to improve the initial design to deliver a refined design, based on test results and physical build evaluations
University of Michigan Advanced Battery Coalition for Drivetrains
 - Cooperative agreement between U of M and GM
 - Five year development agreement
 - Within Vehicle Technology scope as it related to alternative energy resources and efficient hybrid vehicles
 - Task completion mid-2012

FEV, Inc
 - Collaboration of design and development of new module thermal management system
Future Work

- DOE Onsite Visit
 - April 16, 2013
- Battery module development testing complete
 - June 15, 2013
- Battery module design refinement complete
 - July 31, 2013
- Final review – Washington
 - September 2013
Project Summary

- Project extended to Q3 2013 to ensure a successful completion
- On track to meet new program milestones and project deliverables
- Project development testing and refinement defined and on track to meet program completion in the third quarter of 2013