Low Cost Titanium – Propulsion Applications

Curt Lavender and Scott Weil
Pacific Northwest National Laboratory

Dr. Yong-Ching Chen
Cummins Inc.

Dr. Vladimir Moxson
ADMA Products Inc.

May 21, 2009

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Project start date:</td>
<td>October 2008</td>
</tr>
<tr>
<td>Project end date:</td>
<td>October 2009</td>
</tr>
<tr>
<td>Percent complete:</td>
<td>10%</td>
</tr>
</tbody>
</table>

Barriers

- Material limits
- Lack of investment in improving the traditional reciprocator platform
- Cost of advanced materials and their processing

Budget

- Total project funding: $180 K
 - DOE – $180 K
 - Cost Share – 75%
- Funding FY09: $180 K

Partners

- Industrial CRADA Participant: Cummins Inc.
 - Dr. Yong-Ching Chen
- Supplier Development: ADMA Products Inc.
 - Dr. Vladimir Moxson
- Support:
 Engine System Analyst – TBD
Objectives of Project

Reduce the cost to manufacture titanium components for reciprocating and rotating applications

- Evaluate the capability of an emerging low cost titanium powder metallurgy production technology for use in fatigue rated applications
 - Currently, high cost wrought processed titanium is used in low volume high performance propulsion systems
 - By reducing the cost of titanium and the associated processing the performance benefit can be applied to more engine platforms thereby impacting US fuel consumption
- Assess the efficiency gain possible with increased use of titanium in propulsion systems
Deliverables

- Strain-controlled fatigue data from press/sintered and press/sintered/forged Ti6Al4V fabricated from TiH₂ powder
- An initial assessment of the efficiency gains possible with titanium used in rotating and reciprocating components
Technical Approach

- **Technology Development**
 - This is a highly leveraged activity applying technology developed by a Department of Energy Global Initiative for Proliferation Prevention (DOE/GIPP) project performed in the Ukraine
 - Fabricate test bars from low cost TiH₂ powder using low cost high yield powder metallurgy methods
 - Press, sinter
 - Press, sinter and forge
 - Fatigue test samples machined from test bars using a strain controlled fatigue test that has been used to qualify titanium materials in propulsion systems
 - Develop cost model for process deployment

- **Technology Deployment**
 - The test methods are to be selected from procedures used by Cummins Inc. to qualify titanium materials and should be readily applicable to speed up the qualification
 - Test bars are to be fabricated at the commercialization partner of the DOE/GIPP project, ADMA Products Inc.
 - ADMA has been producing approximately 35,000 lbs of TiH₂ powder per year in the Ukraine
 - More vessels are readily available
 - US production under development
Technical Progress

This is a new start project in October of 2008 and progress thus far:

- A cursory cost analysis based on the DOE/GIPP project was made suggesting that a 50% cost reduction of forged Ti6Al4V through the use of TiH₂ may be possible
 - At this cost reduction it is probable that titanium will be used in more applications and engine systems
- Cummins Inc. has identified components used in propulsion systems currently fabricated from titanium to use as a test article
- Cummins Inc. has identified the most relevant mechanical properties test to evaluate the titanium material produced from TiH₂
 - Strain controlled axial fatigue at room temperature will be the initial test method
Low Cost Titanium Hydride Processing

- **TiH$_2$ Powder** – direct press and sinter to reduce machining loss
 - Greater than 96% dense
 - Fine grain sizes observed in TiH$_2$ pressings may meet the fatigue requirements
 - Will have application in other components i.e. valves etc…

![Graph showing atomic percent hydrogen vs. temperature for TiH$_2$](image)

- Fine as-sintered grain size
Low Cost Titanium Manufacture from \(\text{TiH}_2 \)

- Elimination of large yield losses associated with ingot forging can reduce the cost of a forge blank or forging by 50%
 - Yield improvement associated with near-net shape powder metallurgy processing
- Machining requirement may be reduced by nearer-net shape processing
 - Currently 30% of part cost
Product Forms – Ti Hydride

- Powder rolled sheet
- CIP/sinter for slab or billet

Direct P/M
Future Work

- Fabricate test bars and machine fatigue samples
 - ADMA will blend/press/sinter and PNNL will forge
- Perform strain controlled fatigue tests
 - PNNL
- Identify expert in engine efficiency analysis and perform analysis of efficiency improvement with titanium
Summary

- A titanium powder developed during a DOE/GIPP project appears to produce a product with mechanical properties sufficient for a propulsion application from a very low-cost press and sinter process.
 - Could replace costly ingot processed forgings:
 - Eliminates yield loss associated with ingot forging
 - Greater than 50% cost reduction predicted from yield savings alone
 - Unique properties are developed during sintering of TiH₂:
 - High density – critical to fatigue initiation
 - Fine-grain size – import to reduce fatigue crack propagation

- Cummins Inc. has identified a relevant application using the Ti6Al4V alloy and provided the requirements to adequately assess the performance of the press/sinter/forged bars produced from TiH₂.