Low-Cost Direct Bonded Aluminum (DBA) Substrates

H. –T. Lin, A. A. Wereszczak, and S. Waters
Oak Ridge National Laboratory

2013 Vehicle Technologies Annual Merit Review and Peer Evaluation Meeting
Arlington, VA
14 May, 2013

Project ID #: PM036

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Overview

Timeline
• Project start: October 2010
 (actual funding starts: Jan 2011)
• Project end: September 2013
• Percent complete: 75%

Budget
• Total project funding
 – DOE 100%
• FY11: $200k
• FY12: $200k
• FY13: $130k ($80k allocated to-date)

Barriers*
• High cost per kW
• Low energy per kg
• Low energy density
• Insufficient performance and lifetime

Targets
• DOE VTP* 2020 target: $3.3/kW
• DOE VTP* 2020 target: 14.1 kW/kg
• DOE VTP* 2020 target: 13.4 kW/l
• 15 year life

Partners
• NTRC – ORNL
• Marlow (thermoelectric manuf.)
• Materion (metal cladding supplier)

* VTP Multi-Year Program Plan 2011-2015
Objectives

- Develop low-cost, high quality, and thermomechanically robust direct-bonded aluminum (DBA) substrates.
- Use ORNL's in-house unique processing capabilities to fabricate innovative DBA substrates using a process that is amenable for mass production and that produces high adhesive strength of the ceramic-metal interfaces.
- Consider the fabrication and use of low-cost AlN as a potential (and alternative) contributor.

Example of a commercial DBA (with AlN) substrate

Example of Al to AlN bonding in 2010 Prius IGBT

Photo used with permission of Z. Liang (NTRC/ORNL)
Milestones

- **FY13 - 1:** Complete optimization of fabrication processing parameters for DBA substrates with alumina (Al$_2$O$_3$) and aluminum nitride (AlN) ceramic.

- **FY13 - 2:** Complete fabrication of silicon nitride (Si$_3$N$_4$) ceramic substrates with both high mechanical properties and thermal conductivity.

- **FY13 – 3:** Complete development of DBA and/or direct bonded copper (DBC) substrates with high performance silicon nitride ceramics (may not be completed due to budget changes).
Technical Approach

- Study patent and open literature for DBA fabrication.
- Identify alternative processing method to fabricate large-sized DBA substrates that has potential for low-cost manufacture. This is the first primary step in creating availability of low-cost DBA substrates.
- Benchmark existing commercial DBA substrates for eventual comparison against DBA substrates fabricated in this project. Also, benchmark select commercially available DBC substrates.
- Develop Si$_3$N$_4$ material with both high mechanical and thermal properties for ceramic substrate fabrication.
- Develop test method to measure interfacial shear strengths of the Al-ceramic interface.
Accomplishments

Many Bonding Methods Were Considered

Al-Si phase diagram

- Transient Liquid Phase (TLP) process via CVD Si film
- Brazing process via Al-Si alloy film

Al-Si exhibits an eutectic phase at \(~577^\circ\text{C}\)

- Commercial Al-11Si brazing paste (DayBraze 729, Johnson Manufacturing Co.)
- Al-Si alloy foil (All Foils, Inc.)
- Al-Si tape prepared from powders via atomization process (READE Advanced Materials)
- Si tape prepared from powders (Vesta Si)

Hot press conditions:

- 580 – 600°C
- 5 MPa
- Argon or \(\text{N}_2\)
Accomplishments (continued)

Insufficient Bonding Resulted in Early Trials

ORNL DBA substrates via Al-11Si brazing paste

Visual inspection looked sound, but they could be readily peeled off by hand, indicative of poor bonding.

- Low vacuum in the hot-press could cause oxidation of Al plate and paste prior to joining.
- Completed instrumentation of a mechanical testing system with high vacuum furnace.
Accomplishments (continued)

Uncompleted Reaction of Al-Si Paste Combined with High Oxygen Content Were Probably the Cause of Poor Bonding

SEM EDAX element map of ORNL DBA substrate bonded with commercial Al-11Si brazing paste
Accomplishments (continued)

Poor Wettability Existed Between Both Grades of Al-Si Foil and Ceramic Substrate

5250 alloy (Al-Mg-Mn-Si)

6061 alloy (Al-Si-Cu-Cr)

SEM micrographs of polished cross section of as-received Al-Si alloy foils

Hot press at 610°C in N₂

SEM micrographs of Al plate surface after bonding
Accomplishments (continued)

Microstructure of Al-Si-Mg and Si Powders

READE Advanced Materials

SicoMill® Si powder (Vesta Si)

Al-Si and Si film prepared by tape casting will be used to bond Al and Al₂O₃ (AlN) ceramic in the remaining FY13.
Accomplishments (continued)

Cu-clad Al foil was Evaluated as a Candidate Cladding

Developmental Cu-clad Al foil was acquired from Materion Corp., Cleveland, OH.

- The Cu-clad Al material could eliminate the need for interfacial brazing layer.
- Cu-clad Al material exhibits 45% higher thermal conductivity and 30% higher current density.
Accomplishments (continued)

Poor Bonding Resulted Between Cu-Clad Al Foil & Ceramic

- 1: 100% Cu
- 2: 79%Cu-21%Al
- 3: 75%Cu-25%Al
- 4: 53%Cu-47%Al

- Cu-Al exhibits an eutectic point at 550°C lower than Al-Si eutectic point of 577°C
- Active brazing alloy might be needed to prevent early Al-Cu eutectic formation
Accomplishments (continued)

Wide Band Gap Technology (GaN or SiC) Requires High Performance Substrates Such as Si$_3$N$_4$ DBC Substrates

The use of Si$_3$N$_4$ ceramic substrate (1/2 of AIN thickness) with excellent mechanical performance could minimize tensile stress and thus improve mechanical reliability.

\[
\begin{align*}
\sigma &= 400 \text{ MPa} \\
m &= 13 \\
K_{IC} &= 3 \text{ MPa} \cdot \text{m}^{0.5}
\end{align*}
\]

\[
\begin{align*}
\sigma &= 800 \text{ MPa} \\
m &= 18 \\
K_{IC} &= 6 \text{ MPa} \cdot \text{m}^{0.5}
\end{align*}
\]

Courtesy of Hirao Kiyoshi, AIST, Japan

FEA Wereszczak
Accomplishments (continued)

Si$_3$N$_4$ DBC Substrates Have Better Mechanical Reliability Than Traditional Substrates

Kyocera AMT DBC

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Flexure Strength (MPa)</th>
<th>Fracture Toughness (MPa\cdot√m)</th>
<th>Thermal Conductivity (W/m\cdotk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial AIN</td>
<td>400</td>
<td>5</td>
<td>150 - 200</td>
</tr>
<tr>
<td>Kyocera SN460</td>
<td>850</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>Toshiba SN90</td>
<td>650</td>
<td>6.5</td>
<td>90</td>
</tr>
<tr>
<td>Curamic SN*</td>
<td>650</td>
<td>6.5 - 7</td>
<td>90</td>
</tr>
</tbody>
</table>

Curamic (Rogers Corp.) officially demonstrated new Si$_3$N$_4$ DBC substrates at eCarTech, Munich, Oct 2012
Accomplishments (continued)

ORNL Si$_3$N$_4$ Ceramics Exhibit Comparable or Superior Mechanical Properties to Commercial Ones

<table>
<thead>
<tr>
<th>Composition</th>
<th>Flexure Strength MPa @ 22°C</th>
<th>Flexure Strength MPa @ 1200°C</th>
<th>Fracture Toughness MPa•√m</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN8La2Mg</td>
<td>1140</td>
<td>832</td>
<td>10-13</td>
</tr>
<tr>
<td>SN8Gd2Mg</td>
<td>1226</td>
<td>906</td>
<td>11</td>
</tr>
<tr>
<td>SN8Lu2Mg</td>
<td>1040</td>
<td>894</td>
<td>11-13</td>
</tr>
<tr>
<td>SN8La2Si</td>
<td>947</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>SN8Gd2Si</td>
<td>997</td>
<td>803</td>
<td>8</td>
</tr>
<tr>
<td>SN8Lu2Si</td>
<td>942</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>NT154</td>
<td>950</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>SN147</td>
<td>700-800</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>SN240</td>
<td>1000</td>
<td>-</td>
<td>10</td>
</tr>
</tbody>
</table>

US patent: US 7,968,484 B2
Becher and Lin

- **SN** – developed by ORNL
- **NT154** – Saint-Gobain
- **SN147** – Ceradyne
- **SN240** - Kyocera
Accomplishments (continued)

Thermal Conductivity of Si₃N₄ Can be Tailored by Grain Boundary Microstructure and Chemistry

2nd phases, GB film (low thermal property) and lattice oxygen (more phonon scattering) could lower the thermal conductivity of Si₃N₄ ceramics by Shibata and Becher et al.
Accomplishments (continued)

Mechanical Strength of ORNL Si$_3$N$_4$ Ceramics Confirmed

- Composition:
 - 8wt% Lu$_2$O$_3$-2wt% MgO
 - 8wt% Gd$_2$O$_3$-2wt% MgO

- Si$_3$N$_3$ powder:
 - Ube E-10 and ESP

- Processing conditions:
 - Hot-press @ 1800°C, 20MPa, N$_2$

Accomplishments (continued)

ORNL Si₃N₄ Ceramics Exhibit Comparable or Superior Thermal Conductivity to Commercial Si₃N₄

- Kyocera SN460: 60 W/mk
- Toshiba SN90: 90 W/mk
- Curamic SN: 90 W/mk

Manufacturers reported data

Thermal property could be further enhanced by engineering control of Si₃N₄ grain size, oxygen content, and crystallinity of 2nd phase

Measured by laser flash method
Collaborations

- **Partners**
 - Advanced Power Electronics and Electric Motors R&D team members at NTRC of ORNL.
 - Electric and Electronic Tech Team provided constructive input.
 - Marlow (established thermoelectric manufacturer) provided their DBA substrate for ORNL to assess and conduct bench mark test.
 - Materion provided the Cu-clad Al ribbon with tailored thermal and electric property.

- **Technology transfer**
 - Potential with Marlow, GM or Delphi on the development of high performance DBA/DBC substrates with Si$_3$N$_4$ ceramic substrate.
 - Development of high performance DBA substrate with Si$_3$N$_4$ ceramic substrate would provide the high-power and high-temperature challenge for IGBT and MOSFET with SiC or GaN wide band gap material.
Future Work

- Complete fabrication of tape-cast Al-Si thin film using atomization Al-Si powders for bonding Al-AlN (and Al$_2$O$_3$) substrates. (FY 13)
- Complete fabrication of tape-cast Si thin film using commercial Si powders for bonding Al-AlN (and Al$_2$O$_3$) substrates. (FY 13)
- Complete optimization of Si$_3$N$_4$ ceramic with both high mechanical and thermal properties for power electronic ceramic substrates. (FY 14)
- Develop low-cost Si$_3$N$_4$ ceramic using high purity Si powders via sinter-reaction bonded process. (FY 14)
- Fabricate DBC (and DBA) substrates using reaction-bonded Si$_3$N$_4$ ceramics via Ti-containing active brazing element, and tech transfer and commercialize the products. (FY 15)
Summary

- **Relevance**: low cost and robust DBA substrates to improve reliability of power electronic device.
- **Approach**: develop low cost and reliable DBA substrates with AlN and Si₃N₄ ceramic via brazing and/or metallurgical process.
- **Collaboration**: EETT, substrate manufacturers, and materials suppliers.
- **Technical Accomplishments**:
 - Results confirm compromise between low cost and reliability must be struck.
 - Processing and characterization of DBA substrates with Al-Si paste and Al-Si foil.
 - Characterizations of Al-Si and Si powders
 - Re-produce ORNL Si₃N₄ ceramics with consistent excellent mechanical strength
 - Thermal property measurements of ORNL Si₃N₄ ceramics
- **Future Works**:
 - Optimization of Si₃N₄ ceramic with both high mechanical and thermal properties.
 - Development low-cost Si₃N₄ ceramic using high purity Si powder
 - Fabrication of DBC (and DBA) substrates using reaction-bonded Si₃N₄ ceramics and tech transfer and commercialize the products.