Overview of Propulsion Materials
Project ID PM000
Materials Research Role

Propulsion Materials Activities

Materials for Combustion Systems / High Efficiency Engines
- Turbocharger, Valve Train, Fuel Injection, Structural Components Head/Block, Sensors, Materials/Fuel Compatibility

Materials for Exhaust and Energy Recovery
- DPFs, Catalysts, Thermoelectric Materials, Materials for High Temperature Structures

Materials for Electric and Hybrid Drive Systems
- High Temperature Power Electronics Materials, Solder Joints, Materials/Coolant Compatibility, and Materials for Electric Drive Motors

Materials By Design
- Materials Synthesis, Characterization, Multi-Scale Computer models, Testing Standards, and Coatings

VTP Team Collaborations

Advanced Combustion Engine
- LD 45%e @ $30/kW
- HD 55%e
- Biofuels

Hybrid Electric Systems
- 55kW @ $12/kW
- 300Whr @ $20/Whr

Fuels Technologies
- Petroleum Displacement

Petroleum Displacement
Propulsion Materials Research Relevant to VT Goals

• Improve efficiency of advanced vehicles through innovative material solutions

• Critical enabler supporting Advanced Combustion, Thermoelectric, and Hybrid-Drive Systems
 – Material compatibility for Alternative Fuels
 – Materials for high efficiency CI/SI Engines
 – Thermoelectric materials
 – Materials for reliable high performance hybrid and EV drive systems

• Vehicle weight reductions and freight efficiency improvements through increased engine power density (hp/liter and hp/kg)
Successful Projects Rely on Smooth Transitions

Vehicle Technology Penetration
Years After Initial Significant Use

Technology Implementation Timeline

Technology Research Effort

Basic Science Applied Science Industry
• Objectives: identify technology gaps to be overcome such that advanced materials systems are available for heavy & light duty vehicles
 – Lightweighting and Engine Efficiency Sub-Topic Areas:
 • Identify maximum potential reduction by vehicle class and time
 • Identify material requirements necessary to reach potential
 • Identify technical hurdles and gaps on the critical path
 • Identify time based cost targets

• 135 participants representing light duty vehicles (LDV) and heavy duty vehicles (HDV)
 – OEMs (36)
 – Material & Tier 1 suppliers (43)
 – U.S. Government experts (8)
 – Canadian government (4)
 – Trade Organizations (5)
Workshop Participating Organizations

DAIMLER

AIS R
Auto Steel Partnership

Honeywell

TOYOTA

PACCAR

Plasan Carbon Composites

Globe

Composite Solutions, Ltd.

Magna

PlastiComp

Magna

COSMA INTERNATIONAL

NADCA

North American Die Casting Association

Aditya Birla

Novelis

Oak Ridge

National Laboratory

Arvin Meritor

Michelman

Your Competitive Edge

Boeing

MoxST

Materials Innovation Technologies

AOC

World Leader in Real Technology

Argonne

National Laboratory

Nabmag Technologies LLC

Kaiser aluminum

Faurecia

Cummins

Detroit Diesel

Arl

Powering Business Worldwide

Toho Tenax

Eaton

American Chemistry Council

TPi

Magnesium Elektron

Vehicle Technologies Program
eere.energy.gov
Workshop Considerations

• Vehicle subsystems include:

 • Structural systems:
 – Body structure
 – Chassis structures
 – Suspension and drivetrain systems
 – Engine and transmissions
 – Turbo-machinery
 – Exhaust and cooling systems

 • Semi-structural and non-structural systems:
 – Appearance panels
 – Enclosures
 – Bumpers

• Materials considered:
 – Advanced high strength steels
 – Cast iron
 – Aluminum
 – Magnesium
 – Carbon fiber composites
 – Glass fiber composites
 – Unreinforced plastics
 – Advanced materials such as:
 ▪ Titanium
 ▪ MMCs
 ▪ Ni-based alloys
Published Workshop Reports

WORKSHOP REPORT:
Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials
February 2013

FINAL REPORT

WORKSHOP REPORT:
Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials
February 2013

FINAL REPORT
Workshop Propulsion Materials
R&D Gaps and Targets

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2025</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powertrain Weight</td>
<td>Baseline - LDV</td>
<td>25% lighter - LDV</td>
<td>40% lighter - LDV</td>
</tr>
<tr>
<td></td>
<td>Baseline – HDV</td>
<td>15% lighter - HDV</td>
<td>20% lighter - HDV</td>
</tr>
<tr>
<td>Reduction (ICE/HEV)</td>
<td>Baseline - LDV</td>
<td>25% lighter - LDV</td>
<td>40% lighter - LDV</td>
</tr>
<tr>
<td></td>
<td>Baseline – HDV</td>
<td>15% lighter - HDV</td>
<td>20% lighter - HDV</td>
</tr>
<tr>
<td>Power density</td>
<td>LDV Baseline Midsize Car</td>
<td>10% augmented – LDV</td>
<td>30% augmented – LDV</td>
</tr>
<tr>
<td>Fossil Fuel LDV ICE</td>
<td>-2.7L 196 HP (73.4 HP/L)</td>
<td>1.6L 196 HP (125 HP/L)</td>
<td>1.3L 196 HP (150 HP/L)</td>
</tr>
<tr>
<td></td>
<td>15L 475HP (32 HP/L)</td>
<td>1.2L 139 HP (125 HP/L)</td>
<td>0.7L 98 HP (150 HP/L)</td>
</tr>
<tr>
<td></td>
<td>- HDV baseline</td>
<td>30% augmented – HDV</td>
<td>40% augmented-HDV</td>
</tr>
<tr>
<td></td>
<td>11L 475HP (45HP/L)</td>
<td>9L 475HP (53 HP/L)</td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td>5% recovery – LDV</td>
<td>20% recovery – LDV</td>
<td>50% recovery – LDV</td>
</tr>
<tr>
<td>Waste heat recovery –</td>
<td>Turbo Machinery</td>
<td>Turbo /</td>
<td>Turbo/TEs/ Rankine Cycle</td>
</tr>
<tr>
<td>LDV</td>
<td>LDV Thermal Baseline</td>
<td>/ ThermoElectric(TEs)</td>
<td>LDV - 50% Improvement</td>
</tr>
<tr>
<td></td>
<td>30% efficiency</td>
<td>LDV - 25% improvement</td>
<td>(45% e)</td>
</tr>
<tr>
<td></td>
<td>42% efficiency – HDV</td>
<td>(37% e)</td>
<td>60% efficiency- HDV</td>
</tr>
<tr>
<td>Thermal - LDV</td>
<td>Efficiency</td>
<td>Efficiency</td>
<td>Efficiency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Efficiency</td>
<td>Efficiency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Efficiency</td>
<td>Efficiency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Efficiency</td>
<td>Efficiency</td>
</tr>
<tr>
<td>Exhaust Temperatures</td>
<td>870 C - LDV</td>
<td>950 C - LDV</td>
<td>1000 C - LDV</td>
</tr>
<tr>
<td>(Exhaust Valve to Turbo Inlet)</td>
<td>700 C- HDV</td>
<td>800 C - HDV</td>
<td>900 C - HDV</td>
</tr>
<tr>
<td>Cylinder Peak Pressures</td>
<td>Baseline – LDV ~ 50 bar</td>
<td>75 bar - LDV gasoline</td>
<td>>103 bar - LDV gasoline</td>
</tr>
<tr>
<td></td>
<td>190 bar - HDV</td>
<td>250 bar - HDV</td>
<td>300 bar - HDV</td>
</tr>
</tbody>
</table>

Background Graphic Courtesy of Daimler Trucks North America
VTO ACE Materials Gaps

*ACE – VTO Advanced Combustion Engine

LD ACE R&D Concept Requirements

HD ACE R&D Concept Requirements

Current HD DI - ICE

Current LD SI - ICE

AL Alloy

Cast Iron

Engine Materials Used

V engine

Inline engine
Next Generation Engines face new materials issues

Gas Temperatures

- Intake
- Compressor
- Cyl Compression
- Cyl Combustion
- Exhaust V
- Turbo In
- Turbo Out
- Ox Cat
- Catalytic Converter / PM filter

High E SI (W turbo) vs Conventional SI (Naturally Aspirated)
• In 2012 three new Propulsion Materials solicitation topics were released:

• Advanced Light-Weight Cast Alloy Development for LD Applications and High-Strength Cast Alloys for HD Application (two topics). Each topic includes:
 • ICME application and gap analysis
 • Alloy development
 • OEM technology transfer path
 • Alloy validation
 • Component validation

• SBIR Topic: low-temperature catalysts materials targets:
 • 90% effectiveness at 150C
Caterpillar Inc. DE-EE0005980
Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

Project Objectives

• Develop new, high-strength ferrous alloys to allow for higher cylinder pressures in heavy-duty diesel engines

• Develop a low-cost high-strength material that can enable heavy-duty diesel engines to increase their specific power density (horsepower/weight) and increase their thermal efficiency

• Application of ICME models to predict alloy properties and reduce the number of iterations necessary in the alloy development process

Partnerships and Commercialization

• Caterpillar Inc.

• QuesTek

• Argonne National Laboratory (ANL)

• University of Alabama – Birmingham (AMB)

Key Tasks

• Define the requirements and concept for the new alloy design and how its performance will be evaluated

• Establish design of the high potential alloy concepts and refine the structure and process objectives

• Perform alloy design optimization and complete characterization by application of various testing and evaluation

• Apply ICME modeling to demonstrate the final prototype alloy

• Develop an accurate cost model plan for the new alloy

Budget and Project PI

• DOE Budget – $3.5 million over 4 years
 Industry Cost-Share - $1.6 million over 4 years
 Total Funding - $5.1 million

• Project Principal Investigator: Richard K. Huff
Project Objectives

- Development of new, lightweight alloy materials to allow for higher cylinder pressures in high efficiency, light-duty passenger vehicle engines
- Provide a 25% improvement in component strength relative to components made with A319 or A356 and measured using standard material characterization techniques
- Develop a comprehensive cost model that demonstrates the ability of the components (cylinder head or engine block) made using the new alloy

Partnerships and Commercialization

- Ford Motor Company
- Alcoa
- University of Michigan
- MAGMA Foundry Technologies, Inc.

Key Tasks

- Complete ICME guided alloy development by assessing the feasibility of the new alloys and establishing microstructural characterization and property qualification
- Apply model gaps analysis based on the validation of the VAC tools and associated ICME models
- Demonstrate and validate the new alloys on engine components
- Complete a cost model for the new alloys and establishment of a technology transfer and commercialization plan

Budget and Project PI

- DOE Budget – $3.2 million over 3 years
- Industry Cost-Share - $1.4 million over 3 years
- Total Funding - $4.6 million
- Project Principal Investigator: Dr. Mei Li
General Motors DE-EE0006082
Computational Design and Development of a New Lightweight Cast Alloy for Advanced Cylinder Head in High Efficiency Light Duty Engines

Project Objectives
- Development of new, lightweight alloy materials to allow for higher cylinder pressures in high efficiency, light-duty passenger vehicle engines
- Provide a 25% improvement in component strength relative to components made with A319 or A356 and measured using standard material characterization techniques
- Develop a comprehensive cost model that demonstrates the ability of the cylinder head made using the new alloy

Partnerships and Commercialization
- General Motors
- QuesTek Innovations LLC
- Northwestern University
- MIT
- Camaneo Associates
- GKS Engineering Services
- J Fred Major Consulting
- AFS

Key Tasks
- Use ICME tools to design and optimize high-performance lightweight cast alloy(s)
- Utilize advanced experimental and analytical approaches to characterize multi-scale microstructure and defects of the computationally designed alloys
- Perform standard materials thermal-physical and mechanical property testing
- Develop cost models to accurately predict the manufacturing cost with the project’s newly developed alloy.

Budget and Project PI
- DOE Budget – $3.5 million over 4 years
- Industry Cost-Share - $1.65 million over 4 years
- Total Funding - $5.15 million
- Principal Investigator: Mike Walker
High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines

Project Objectives

- Develop high performance cast aluminum alloys with improved castability, high temperature strength and fatigue performance compared to industry standard A319 and A356 baseline alloys. Engine cylinder heads cast with the new alloys will have a minimum of 25% strength improvement compared to those cast from the baseline alloys, and will cost approximately 10% more than heads manufactured by A319 or A356. The new alloy will be designed to enable an increase in maximum component operating temperature by ~ 50°C.

- Evaluate the adequacy of existing ICME models and codes for the prediction of properties and development of cast aluminum alloys. A gap analysis report for existing ICME codes for cast aluminum alloy development will be generated.

Key Tasks

<table>
<thead>
<tr>
<th>Task Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1: Define requirements, acceptance criteria and performance targets for cast parts</td>
</tr>
<tr>
<td>Task 2: Alloy development, trial casting and screening of alloys</td>
</tr>
<tr>
<td>Task 3: Refine alloy compositions by application of existing ICME models to predict performance</td>
</tr>
<tr>
<td>Task 4: Alloy selection and demonstration of improved properties</td>
</tr>
<tr>
<td>Task 5: Component level demonstration</td>
</tr>
<tr>
<td>Task 6: Cost modeling</td>
</tr>
</tbody>
</table>

Partnerships and Commercialization

Nemak casts aluminum cylinder heads for Chrysler engines

Budget and Project PI

- DOE Budget – $3.5 million over 4 years
 Industry Cost-Share - $2.0 million over 4 years
 Total Funding - $5.5 million

- Project Principal Investigator
 Amit Shyam
 Oak Ridge National Laboratory
Planning is Critical

Vehicle Technology Penetration
Years After Initial Significant Use

Food for Thought
- Design process is about 4 years
- For inclusion, new materials must be qualified before designs begin
- New materials typically take 10+ years to develop

Materials Research Must be Focused on the Horizon
Project/Agreement Management

Prospective New Agreements in Each Technology Area are Evaluated On:

- Relevance to Vehicle Technologies Program Objectives
- Supported Team’s priorities
- Potential for co-funding from other VTP Teams
- Industry support for activity
- Perceived risk/benefit to Program
- Mechanism for Technology Transfer

• Existing activities are evaluated annually
 - Identify activities that should be transitioned to other VTP Teams or Industry
 - Identify activities requiring changes in effort

• Approximately 15% of activities are retired each year

• Goal to migrate over 70% of portfolio to competitively awarded solicitations by 2015
Funding Direction

<table>
<thead>
<tr>
<th>Funding</th>
<th>FY 2012* Enacted</th>
<th>FY 2013** Full Year CR</th>
<th>FY 2014*** Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Funding</td>
<td>$8.2</td>
<td>$5.8</td>
<td>$4.0</td>
</tr>
<tr>
<td>Solicitations</td>
<td>$4.8</td>
<td>$6.5</td>
<td>$6.0</td>
</tr>
<tr>
<td>Total</td>
<td>$13.0</td>
<td>$12.3</td>
<td>$10.0</td>
</tr>
</tbody>
</table>

Solicitations %

<table>
<thead>
<tr>
<th></th>
<th>36%</th>
<th>53%</th>
<th>60%</th>
</tr>
</thead>
</table>

* FY 2012 SBIR/STTR removed.
** FY 2013 full year CR inclusive of SBIR/STTR.
*** FY 2014 budget request inclusive of SBIR/STTR.

![Pie Chart](chart.png)

- **Hybrid Electric Drive System Materials**
- **Materials for High Efficiency Engines**
- **Emissions / Durability**
- **Fuels Compatibility**
- **Materials by Design & Thermoelectric**
Expert Reviewers are essential

• Expert Reviewers can provide a non-biased evaluation of project at the Merit Review
 – Identify activities that should be transitioned to other VTP Teams or Industry
 – Ask questions that can lead to better activities
 – Identify activities requiring changes in effort (increase or decrease)

• Non-biased expert Reviewers are key to reaching goal to migrate over 70% of portfolio to competitively awarded solicitations by 2015*
 – Every proposal must be reviewed by at least 3 expert reviewers
 – Range of potential topic areas adds to complexity of finding reviewers

* Goal was shifted out 1 year due to lower request level in 2014
Thank You

www.vehicles.energy.gov

Jerry Gibbs
Propulsion Materials
Technology Development Manager
Vehicle Technologies Program
Email: jerry.gibbs@ee.doe.gov