Magnesium Front End Research and Development

Project ID Im_20_quinn

AMD 604

2009 DOE Merit Review Presentation

Prepared by: Alan A. Luo and R. C. McCune
Presented by: James Quinn, General Motors

Unibody Architecture - Steel

This presentation does not contain any proprietary, confidential or otherwise protected information
Acknowledgement

This material is based upon work supported by the Department of Energy National Energy Technology Laboratory under Award Number No. DE-FC26-02OR22910.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Such support does not constitute an endorsement by the Department of Energy of the work or the views expressed herein.
Overview

Timeline
• Start: Oct. 1, 2006
• End: Sept. 30, 2009
• 65% complete

Budget
• Total project funding
 – DOE: $1.5 M
 – USAMP: $3.5 M
 + Canada: $3M (U.S. Equiv.)
 + China: $3M (U.S. Equiv.)
• Funding received in FY08: $347.7 K
• Funding for FY09: $934.0 K
• Funding for FY10: $0
 (Project ends FY09)

Barriers/targets
• Improved high volume manufacturing techniques for shaping for Mg- Low-cost extrusion, casting and sheet forming technologies.
• Improved high volume manufacturing techniques for joining of Mg - Large-scale joining and corrosion protection of magnesium structures.
• Corrosion: Durability of Mg-intensive structures (fatigue and corrosion).

Partners
• OEMs: Chrysler, Ford, GM
• U.S. Supplier list (next slide)
• International Partners from China and Canada. (slide 4)
U.S. Partner Organizations

<table>
<thead>
<tr>
<th>Cosma Engineering</th>
<th>North Dakota State University</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Dayton – Research Institute</td>
<td>Mississippi State University</td>
</tr>
<tr>
<td>IAC Corporation</td>
<td>Magni Industries</td>
</tr>
<tr>
<td>Westmoreland Testing</td>
<td>Keronite</td>
</tr>
<tr>
<td>Henkel U.S.</td>
<td>International Hardcoat Corp.</td>
</tr>
<tr>
<td>PPG Industries</td>
<td>Dow Automotive</td>
</tr>
<tr>
<td>Chemetall Oakite</td>
<td>Visteon Inc.</td>
</tr>
<tr>
<td>MetoKote</td>
<td>MNP Corp.</td>
</tr>
<tr>
<td>Atotech</td>
<td>ATF Inc.</td>
</tr>
<tr>
<td>MacDermid</td>
<td>Kamax LP</td>
</tr>
<tr>
<td>Luke Engineering</td>
<td>REMINC</td>
</tr>
<tr>
<td>University of Michigan – Dearborn</td>
<td>Hitachi America</td>
</tr>
<tr>
<td>Ohio State University</td>
<td>North American Die Casting Assn.</td>
</tr>
<tr>
<td>Eastern Michigan University</td>
<td>Gibbs Die Casting</td>
</tr>
<tr>
<td>Contech U.S., LLC</td>
<td>EKK Inc.</td>
</tr>
<tr>
<td>Scientific Forming Technologies Corp.</td>
<td>Timminco Corp.</td>
</tr>
<tr>
<td>Lehigh University</td>
<td>U.S. Magnesium Corp.</td>
</tr>
</tbody>
</table>

This presentation does not contain any proprietary, confidential or otherwise protected information
International Partner Organizations

Canada
- CANMET (Natural Resources Canada)
- University of Waterloo
- University of Western Ontario
- Ryerson University
- University of Sherbrooke
- GM – Canada
- University of Windsor
- Centerline Corp.
- University of Toronto
- NRC – Aerospace Divn.
- MAGNA
- Meridian Corp. - Canada

China
- China Magnesium Center (Ministry of Science and Technology)
- Tsinghua University (Beijing)
- Meridian Corp. - China
- Louyang Copper
- Zhejiang University
- Shanghai Jiao Tong University
- Xi’an University of Technology
- Chongqing University
- Northeastern University
- Inst. of Metals Research – Shenyang
- Dalian University
- Shanxi Yingguang Magnesium

This presentation does not contain any proprietary, confidential or otherwise protected information.
Overall Objectives

Organize and deploy an international research and development project aimed at the advancement of magnesium technology by a dedicated collective of researchers toward the goal of having sufficient engineering and manufacturing capabilities to exploit the full weight-reduction potential of magnesium alloys as engineering materials for entire automotive sub-structures, thereby leading to concomitant fuel economy realizations at affordable cost, excellent vehicle performance and with due consideration for the environment.

General Targets:

- Mass reduction up to 60% less than steel comparator; 35% less than aluminum comparator structure.
- Neutral or negative cost penalty compared to steel baseline.
- Vehicle performance attributes comparable to baseline structures.

FY2008 Targets

- Support conduct of international review meeting in China, April 2008.
- Demonstrate technology readiness required to pass USAMP AMD Board “Gate 2” Review, July 2008.
- Develop pertinent technologies to meet U.S. task goals
- Assure conduct of individual task area research and achievement of international task area goals.
- Provide performance and manufacturing data to companion AMD603 design project for incorporation in “Phase 2” adaptations.
FY2008 Milestones

• Participated in 2nd International Review Meeting, Hangzhou, PRC, April 1-4, 2008.

• Contributed to 1st published review document of the international project released at China meeting.

• Passed USAMP AMD Board Gate 2 Review in July, 2008.

• Individual Task Area achievements detailed by list in this report.
APPROACH

1. Knowledge-based attributes by Task team:

 Task 1.1 – Crashworthiness
 Task 1.2 - Noise, Vibration, Harshness (NVH)
 Task 1.3 - Durability (fatigue, fracture, environmentally-assisted fracture)
 Task 1.4 - Corrosion and surface treatment

2. Enabling Materials and Manufacturing Technologies

 Task 1.5 – Low-cost extrusion and forming.
 Task 1.6 – Low-cost sheet and forming.
 Task 1.7 - High-integrity casting.
 Task 1.8 - Joining

3. Integrated Computational Materials Engineering (ICME) – conducted as separate projects: AMD702 and AMD703.

4. Phased long-term project with decision gate in 5/09 to build prototype structure or surrogate structure in Phase 2 continuation if agreed.

This presentation does not contain any proprietary, confidential or otherwise protected information.
FY2008 Accomplishments

Task

1.1 **Crashworthiness** – Fabricated and conducted static and dynamic evaluation of tubular crush structures in 2 of 3 materials of consideration: AZ31 sheet and AM30 extrusion.

1.2 **NVH** – Developed noise transmission models and evaluation of acoustic materials. Provided CAD models and materials to partner countries for analysis.

1.3 **Durability** – Organized and conducted 3-country round robin fatigue tests of AM30 extrusion material. Developed geometry for welded joint fatigue studies.

1.4 **Corrosion** – Conducted 1st round evaluation of candidate surface pretreatments and developed approach for evaluating coatings to steel fasteners in galvanic couples.

1.5 **Extrusion** – Conducted validation of DEFORM model for extrusion process and designed and produced extruded AM30 box sections for crashworthiness testing.

1.6 **Sheet** – Conducted companion project AMD602 for warm-forming of AZ31 sheet material. Obtained novel twin-roll sheet materials from China for evaluation.

1.7 **Casting** – Obtained first “super vacuum die cast” components and provided materials for testing and analysis by other task teams. Developed tooling and analysis for Task 1.1 crush tube components to be manufactured by the SVDC process.

1.8 **Joining** – Conducted assessment of pretreatment effect on adhesive bonding and loss of adhesive strength in corrosion undercutting. Developed programs for threaded fasteners and friction-stir welding.

This presentation does not contain any proprietary, confidential or otherwise protected information
FY2008 Accomplishments - Highlights

- New understanding and limitations in crashworthiness and NVH
- New processes such as super-vacuum die casting and continuous cast sheet
- Promising results in corrosion (coating protection), fatigue and joining technologies
- Limitation of the current AZ and AM alloys: low properties and strong anisotropy

<table>
<thead>
<tr>
<th>Alloy</th>
<th>UTS, MPa</th>
<th>YS, MPa</th>
<th>Elongation, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ91D-SVDC</td>
<td>230</td>
<td>160</td>
<td>4</td>
</tr>
<tr>
<td>AZ91D-HPDC</td>
<td>200</td>
<td>150</td>
<td>2.5</td>
</tr>
<tr>
<td>AM60B-SVDC</td>
<td>230</td>
<td>125</td>
<td>9</td>
</tr>
<tr>
<td>AM60B-HPDC</td>
<td>210</td>
<td>120</td>
<td>6</td>
</tr>
</tbody>
</table>
Future Work

1. Conduct decision gate process with international partners in May, 2009 to determine parameters for either continuation of research or termination of efforts in September ‘09.

2. Conclude all Phase 1 task objectives by end of Sept. ‘09, or seek extensions to continue specific research in the following task areas requiring additional time and effort:

 a.) Fatigue and Durability (1.3)
 b.) Corrosion and Surface Treatment (1.4)
 c.) Joining (1.8)
 d.) Novel crashworthiness options including mixed material designs.

3. Provide ongoing details of design and manufacturing to companion project AMD603 (Design and Development) for incorporation into determination of design performance by CAE (e.g. durability and crashworthiness) and manufacturing ‘Bill of Process’ which forms the basis for technical cost models.
Summary

• The AMD604 Project has clearly demonstrated the capability for an international cooperative research effort with multiple and complex technical disciplines and targets, and the associated organizational structure required to effectively conduct the research work and make the results known to participants.

• Indications from the companion design project (AMD603) suggest that design targets for weight reduction relative to steel baseline may approach a 50% capability for the unibody structure based upon known forming technologies (e.g. die casting, sheet forming and extrusion), and presumptions regarding joining and surface finishing technologies.

• Crashworthiness and durability (e.g. fatigue, corrosion, stress corrosion) remain among the top “knowledge-based” concerns and areas for improved information and consideration.

• Surface treatment for corrosion protection and selection of appropriate joining technologies are among the critical manufacturing issues to be determined.

• Capability to form all constituent magnesium components via die casting, extrusion or sheet forming by “warm” processes appears feasible.