Fuel-Cycle Energy and Emissions Analysis with the GREET Model

Michael Wang
Argonne National Laboratory
May 19, 2009

Project ID: ftp_02_wang

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview of GREET Model Development

Timeline
- Start – 1995
- Finish – continuous
- % complete – not applicable

Budget
- Total project funding
 - DOE share: ~$5 million from various EERE offices since 1995
- Funding received from VT Fuel Utilization
 - FY08: $500k
 - FY09: $400k

Barriers Addressed
- Develop a comprehensive tool to examine full energy and emission effects of vehicle/fuel systems
- Conduct thorough WTW analyses with the developed tool

Partners
- Other national labs
- The auto industry
- The energy industry
- Other government agencies
- Research institutions and universities
The GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) Model

- The GREET model and its documents are available at Argonne’s website at http://www.transportation.anl.gov/software/GREET/
- The most recent GREET version (GREET 1.8c) was released in March 2009
- GREET application reports are available at the GREET website
Objectives

• Develop the GREET model as a consistent, transparent LCA tool so that DOE and stakeholders can evaluate energy and GHG emission effects of advanced vehicle technologies and new transportation fuels

• Conduct thorough well-to-wheels (WTW) analyses of vehicle/fuel systems of interest to DOE and the nation

• Engage in discussions and exchanges with the auto industry, the energy industry, and government agencies to provide objective WTW results for technology R&D and policy development

• Interact with research institutions and universities to advance WTW analytic methodologies
GREET Development Milestones

• The first GREET version was released in 1996
• The most recent GREET version – GREET1.8c – was released in March 2009
• Major WTW studies were completed in the past 13 years:
 ✓ Alternative-fuel vehicles in 1990s
 ✓ NG-based fuel production pathways in late 1990s
 ✓ Hydrogen pathways in early 2000s
 ✓ Biofuels since the middle of 1990s
 ✓ XTLs since 2005
GREET Users and Their Distribution

Cumulative Number of GREET Users

- University
- Industry
- Other
- Government
- Consulting
- NGO

North America
Europe
Asia
Other
Approach

• Develop the GREET model as a user-friendly LCA model to serve researchers and policy makers for LCA needs
• Obtain and develop reliable input data for the GREET model
• Well-to-pump data sources
 ✓ Open literature
 ✓ Engineering analysis (such as ASPEN simulations for mass and energy balance)
 ✓ Stakeholder inputs (e.g., collaboration with the energy industry)
• Pump-to-wheels data sources
 ✓ Fuel economy
 ➢ Open literature
 ➢ Vehicle simulations with models such as Argonne’s PSAT model
 ✓ Vehicle operation emissions
 ➢ Open literature
 ➢ Emission testing results
 ➢ EPA MOBILE model
 ➢ CARB EMFAC model
GREET Includes More Than 100 Fuel Production Pathways from Various Energy Feedstocks

- **Petroleum:**
 - Conventional Oil Sands
 - Gasoline
 - Diesel
 - LPG
 - Naphtha
 - Residual oil

- **Natural Gas:**
 - NA
 - Non-NA
 - CNG
 - LNG
 - LPG
 - Methanol
 - Dimethyl Ether
 - FT Diesel and Naphtha
 - Hydrogen

- **Corn**
 - Ethanol
 - Butanol

- **Soybeans**
 - Biodiesel

- **Sugar Cane Cellulosic Biomass:**
 - Switchgrass
 - Fast growing trees
 - Crop residues
 - Forest residues
 - Ethanol
 - Hydrogen
 - Methanol
 - Dimethyl Ether
 - FT Diesel

- **Residual Oil:**
 - Coal
 - Natural Gas
 - Nuclear
 - Biomass
 - Other Renewables

- **Coal**
 - Hydrogen
 - FT Diesel
 - Methanol
 - Dimethyl Ether

- **Nuclear Energy**
 - Hydrogen

- **Electricity**
 - Coke Oven Gas
 - Hydrogen
GREET Includes More Than 75 Vehicle/Fuel Systems

Conventional Spark-Ignition Vehicles
- Conventional gasoline, federal reformulated gasoline, California reformulated gasoline
- Compressed natural gas, liquefied natural gas, and liquefied petroleum gas
- Gaseous and liquid hydrogen
- Methanol and ethanol

Spark-Ignition Hybrid Electric Vehicles: Grid-Independent and Connected
- Conventional gasoline, federal reformulated gasoline, California reformulated gasoline
- Compressed natural gas, liquefied natural gas, and liquefied petroleum gas
- Gaseous and liquid hydrogen
- Methanol and ethanol

Compression-Ignition Direct-Injection Hybrid Electric Vehicles: Grid-Independent and Connected
- Conventional diesel, low sulfur diesel, dimethyl ether, Fischer-Tropsch diesel, E-diesel, and biodiesel

Battery-Powered Electric Vehicles
- U.S. generation mix
- California generation mix
- Northeast U.S. generation mix
- User-selected generation mix

Fuel Cell Vehicles
- Gaseous hydrogen, liquid hydrogen, methanol, federal reformulated gasoline, California reformulated gasoline, low sulfur diesel, ethanol, compressed natural gas, liquefied natural gas, liquefied petroleum gas, and naphtha

Compression-Ignition Direct-Injection Vehicles
- Conventional diesel, low sulfur diesel, dimethyl ether, Fischer-Tropsch diesel, E-diesel, and biodiesel

Spark-Ignition Direct-Injection Vehicles
- Conventional gasoline, federal reformulated gasoline, and California reformulated gasoline
- Methanol and ethanol
The Pathway of Oil Sands to Gasoline and Diesel Requires a Large Amount of Steam and H_2

- Oil sands
 - Mining
 - In-situ (SAGD)
 - Steam
 - Hydrogen
 - Synthetic crude oil
 - Bitumen
 - Diluent
 - SCO or bitumen transportation
 - Petroleum refining to gasoline and diesel

- Gasoline and diesel at refueling station
- Gasoline and diesel transportation

- Natural gas
- Coal
- Pet coke
- Nuclear
GREET Well-to-Wheels GHG Results for Gasoline from Convention Crude and Oil Sands

WTW GHG Emissions: g/mmBtu

- Conventional Crude
- Oil sands-mining: GREET
- Oil sands-mining: GHGenius
- Oil sands-in-situ: GREET
- Oil sands-in-situ: GHGenius
Four FT Diesel Production Options Were Evaluated

- Natural gas to liquids (GTL)
- Coal to liquids (CTL)
- Biomass to liquids (BTL)
- Co-firing of coal and biomass to liquids (C/BTL)
 - 85/15 C/B co-feeding
 - 38/62 C/B co-feeding: GHG breakeven with petroleum diesel
Trade-Offs Between Petroleum Reductions and GHG Reductions by XTLs
Future Work

• Update GREET with new testing data for XTLs in U.S. diesel cars

• Expand GREET to include new fuel production pathways such as
 ✓ Landfill gas to CNG and LNG
 ✓ New biofuel pathways
 ✓ Other non-petroleum pathways

• Develop GREET with a new programming platform for easier expansion and use

• Conduct WTW analyses to serve DOE and others
Summary

• With EERE support, GREET has become a standard tool for LCAs of vehicle/fuel systems
 ✓ Examine energy and GHG reduction potentials of advanced vehicle technologies and new transportation fuels
 ✓ Identify opportunities and challenges of achieving energy and GHG emission reductions by vehicle technologies and fuel production pathways

• Expansion and maintenance of GREET to serve transportation LCA needs will continue