Development of Large Format Lithium Ion Cells with Higher Energy Density

Erin O’Driscoll (PI)
Han Wu (Presenter)
Dow Kokam
May 13, 2013

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline

• Project start date: Oct. 1, 2011
• Project end date: Mar. 31, 2015
• Percent complete: ~30%

Barriers

• Barriers addressed
 – Increase energy density of lithium ion battery
 – Reduce cost
 – Maintain good cycle life

Budget

• Total estimated project cost:
 – DOE share: $4,986,984
 – Dow Kokam share: $2,431,606
• Funding received in FY11: $1,957,460
• Funding for FY12: $997,560
• Total funding received: $2,955,020

Partners

• Dow Kokam – Project Lead
• Wildcat Discovery Technology (WDT) – Cathode Materials and High Voltage Electrolytes
• Oak Ridge National Lab (ORNL) – Material Characterization
• University of Missouri, Kansas City (UMKC) – Analytical Support
Project Objectives

• To research, develop, and demonstrate Li-ion battery cells that are capable of achieving an energy density of >500 Wh/L and a power density of >500 W/L while maintaining comparable performance standards in terms of cycle life (300-1000 cycles at 80% initial capacity), calendar life (5-10 years), and durable cell construction and design capable of being affordably mass produced.
Project Approach

- **Phase 1:** Mobilize Resources, Implement Project Management Plan, Institute Project Controls *(On-going)*
- **Phase 2:** Establish Model & Performance Baseline NMC/Graphite Cell, Establish Baseline Capacity For Cells, Install Equipment *(90% Completed)*
- **Phase 3:** Optimize High Voltage Cell Design and Finalize Materials Development, Scale Up High Voltage Cathode Material, Produce High Energy Interim Cells, Estimate Costs *(40% Completed)*
- **Phase 4:** Develop and Optimize High Capacity Materials and Cell Designs, Produce High Energy Interim Cells, Estimate Costs *(20% Completed)*
- **Phase 5:** Produce And Deliver Large Format Baseline and High Energy Cells *(Not Scheduled to Start Until 2014)*
- **Phase 6:** Verify Achievement of Cost Goals and Develop Commercialization Plan *(20% Completed)*
Performance of 2-Ah Hand-Assembled Baseline Cells

Baseline cells passed all tests; they will be delivered to ANL for testing in April 2013.

5/13/2013 This presentation does not contain any proprietary, confidential, or otherwise restricted information
High Capacity Anode Development

- Si-based anodes provide high capacity as claimed
- Matching between anode and cathode is important
- Charging conditions must be optimized
- DK is now testing full cells

Anode Material 1

Anode Material 2
The high voltage material system, CM1/EM1/Graphite, achieved an energy density of ~340 Wh/L in 65X95-mm hand-made cells.
Gas generation continued throughout the cycle life test.
Three-electrode cells showed that the cathode reached >5V during cycling.
Presently:
- Developing improved HVC with higher specific energy
- Evaluating effects of cell resistance by changing electrode design
High Capacity Cathode Development

Comparison with State of the Art

<table>
<thead>
<tr>
<th>Metric</th>
<th>NMC LiNi<sub>1/3</sub>Mn<sub>1/3</sub>Co<sub>1/3</sub>O<sub>2</sub></th>
<th>LMNO LiMn<sub>1.6</sub>Ni<sub>0.6</sub>O<sub>4</sub></th>
<th>OLO Li<sub>1.3</sub>Ni<y>2</y>Mn<y>0</y>yCo<sub>2</sub>O<sub>2</sub></th>
<th>HCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity (mAh/g)</td>
<td>155</td>
<td>147</td>
<td>274</td>
<td>288#</td>
</tr>
<tr>
<td>Gr. Energy (Wh/kg)</td>
<td>590</td>
<td>690</td>
<td>1000</td>
<td>1090#</td>
</tr>
<tr>
<td>Vol. Energy (Wh/L)</td>
<td>2760</td>
<td>3060</td>
<td>4470</td>
<td>4790#</td>
</tr>
<tr>
<td>Rate Performance (% at 1C)</td>
<td>87</td>
<td>95</td>
<td>80</td>
<td>-</td>
</tr>
<tr>
<td>Cycle Life (80% of Initial)</td>
<td>>1000</td>
<td>~700</td>
<td>300</td>
<td>-</td>
</tr>
<tr>
<td>Cost ($/kg)</td>
<td>24-30</td>
<td>~20</td>
<td>~22</td>
<td>~21*</td>
</tr>
</tbody>
</table>

Theoretical Values * Estimation based on similar process cost of OLO

- Low irreversible capacity and no voltage fade are expected for HCC
- HCC has potential to directly compete with OLO
High Capacity Cathode Development Status

- Screen more than ~2000 materials
- Improve stability to air, capacity, and energy density
- Develop low cost solid state synthesis for HCC
High Capacity Cathode Development Status

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Theoretical</th>
<th>HCC Baseline</th>
<th>HCC from Primary Screen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity (mAh/g)</td>
<td>288</td>
<td>240</td>
<td>267</td>
</tr>
<tr>
<td>Energy (Wh/kg)</td>
<td>1090</td>
<td>864</td>
<td>977</td>
</tr>
<tr>
<td>Rate Performance (% at 1C)</td>
<td>-</td>
<td>68</td>
<td>77</td>
</tr>
<tr>
<td>Reversible Capacity (%)</td>
<td>-</td>
<td>75</td>
<td>90</td>
</tr>
<tr>
<td>Full Cell Cycle Life (80% of Initial)</td>
<td>-</td>
<td>50</td>
<td>N/A</td>
</tr>
<tr>
<td>Stability</td>
<td>-</td>
<td>Air sensitive</td>
<td>Air stable</td>
</tr>
</tbody>
</table>

- Promising HCC materials are identified by WDT
- WDT is screening for precursors and dopants
Collaboration

- Wildcat Discovery Technologies – Dr. Bin Li
 - Screening of new HVC and HCC materials
 - Screening of dopants to improve material performance
 - Development of synthesis techniques
- Oak Ridge National Laboratory – Dr. David Wood
 - Materials characterization
 - Failure mode analysis
- University of Missouri, Kansas City – Prof. Xiaobo Chen
 - Analytical support
Proposed Work in 2013

- **High Capacity Anode (HCA)**
 - Fabricate and test 2-Ah full cells with HCA as the anode

- **High Voltage Cathode (HVC)**
 - Test improved CM1 in half cells and full cells
 - Search and down-select alternative high voltage electrolytes
 - Combine HVC and HCA in 2-Ah format full cells, deliver to ANL for testing if performance is promising

- **High Capacity Cathode (HCC)**
 - Complete material development and finalize candidate materials
 - Material characterization for physical and electrochemical properties
 - Test the compatibility of HCC and HCA
Program Summary

• Goal: To develop a large format lithium ion cell with energy density > 500 Wh/L
• Approach: Develop 2-Ah format baseline cells using high voltage and high capacity cathodes, in parallel, with high capacity anodes
• Technical accomplishments in 2012:
 – Baseline cells completed, will be delivered to ANL (est April 2013)
 – Si-Based anodes screened and selected, specific capacity >500 mAh/g
 – High voltage cathode demonstrated 340 Wh/L in 64X95-format full cells with graphite anode
 – Development of high capacity cathode material initiated, currently achieved ~250 mAh/g before optimization