Metal-Based High Capacity Li-Ion Anodes

M. Stanley Whittingham
State University of New York at Binghamton
May 15th, 2013

Project ID #
ES063

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline

- Project start date: 01-01-2011
- Project end date: 12-31-2014
- Percent complete: 50%

Barriers

- Barriers addressed
 - Lower-cost
 - Higher volumetric capacity and
 - Abuse-tolerant safer anodes

Budget

- Total project funding
 - DOE $724,626
 - Contractor share: Personnel
- Funding received
 - FY12: 172k$
 - FY13: 172k$

Partners

- National Laboratories
 - Brookhaven; Argonne; Lawrence Berkeley
- Local Industry
 - Primet
- Academia
 - Other Anode Partners
• The primary objectives of our work are to:
 – Increase the volumetric capacity of the anode by a factor of two over today’s carbons
 • 1.6 Ah/cc
 – Increase the gravimetric capacity of the anode
 • ≥ 500 Ah/kg
 – Lower the cost of materials and approaches
 – Be compatible with low cost layered oxide and phosphate cathodes and the associated electrolyte

• The relevance of our work is:
 – Achieving the above objectives
 • Will increase the cell energy density by up to 50%.
 • Will lower the cost of tomorrow’s batteries
Relevance: Milestones

a) Determine the limitations to the electrochemical behavior of mechanochemical tin. Characterize these materials and determine their electrochemical behavior. (Sep. 12)
 • **Completed.** The nano-size tin meets the gravimetric capacity of the Sn-Co-C electrode. Ti reductant is superior to Al

b) Determine the electrochemistry of a new synthetic nano-silicon material. (Sep. 12)
 • **Completed**

c) Determine the reaction mechanism of the nano-Sn-Fe-C system. (May 13)
 • **Ongoing.** Carbon is an active element

d) Identify an anode candidate having an energy density of 2 Ah/cc for at least 100 cycles. (Sept. 2013)
 • **Ongoing**
Approach and Strategy: Improved Anodes

- Place emphasis on low cost materials, tin and silicon
 - Study modified tin initially
 - Safer than silicon
 - 2 Li/Sn doubles capacity
 - Find several simple synthesis methods
 - Nano-amorphous tin
 - Need low cost components
 - Protect the nano-tin
 - From side reactions
Technical Accomplishments: Barriers being Addressed

- **High Cost**
 - Find a tin-based anode, that does not contain cobalt
 - Low cost materials
 - Low cost manufacturing method

- **Low Volumetric Capacity of Li-ion batteries**
 - Volumetric capacity of Li-ion batteries limited by carbon anode
 - Find a material with double the volumetric capacity

- **Low Safety and Abuse-tolerance**
 - Find an anode that reacts with lithium faster
 - Minimizes risk of dendrite formation
 - Find an anode that reacts with lithium at 300-500 mV vs Li
 - **Minimizes risk** of dendrite formation
 - Allows for higher rate charging
Milestone (a) - Synthesis Approach: Nano-size tin materials synthesized

Method 1:
- SnO reduced by Ti and carbon with hard iron balls by mechanochemical methods
 - Use of iron grinding media results in formation of Sn$_2$Fe/C composite
 - As reaction time increases, tin phase becomes Sn$_2$Fe
 - If reaction too long, iron phase is gradually formed after all Sn is converted to Sn$_2$Fe
- Electrochemical behavior determined
 - The capacity retention has been improved compared with our previous results.
 - Good electrochemistry associated with reaction time (e.g. 10 hours better than 20 hours).
Milestone (a) - Synthesis Approach: Nano-size tin materials synthesized – Ti > Al

- **Method 1:**
 - **SnO reduced by Ti** and carbon by mechanochemical methods
 - Titanium found to be most effective reducing agent
 - Results in formation of Sn$_2$Fe/C composite
 - Good electrochemistry found

 - **SnO reduced by Al** and carbon by mechanochemical methods
 - Use of iron grinding media results in formation of Sn$_2$Fe/C composite
 - Capacity retention is as good as in Ti-reduction, but the capacity is lower (~390 mAh/g).
Increasing tin content reduces capacity and retention
Electrochemical studies of Sn₅Fe compound

Collaboration with CNF at Brookhaven National Laboratory
Milestone (a) achieved using method 1:
Tin-carbon electrode + Fe as Sn$_2$Fe

SnFe Capacity/Rate Capability surpasses present commercial SnCo-C

Lithium removal – discharge of cell
Lithium insertion – charging of cell
Nanosized Sn\textsubscript{2}Fe embedded in carbon

Milestone (c) underway:
Reaction mechanism of nano-Sn-Fe-C

PDF analysis identifies phases formed

Sn\textsubscript{2}Fe-C + Li → Li\textsubscript{4.4}Sn + Fe + Sn\textsubscript{2}Fe (unreacted) + Li\textsubscript{0.5}C

C

C
Milestone (c) being achieved using method 1: Volumetric energy density exceeds carbon

- **Gravimetric capacity:**
 - Measured reversible capacity of 600 Ah/kg of total composite
 - Sn_2Fe contributes 804 Ah/kg of Sn_2Fe
 - Remainder contributed by carbon
 - Must be C_2Li
 - 1100 Ah/kg
 - Theoretical capacity of 760 Ah/kg for total composite
 - If C_6Li then theoretical capacity is 490 Ah/kg

- **Volumetric capacity:**
 - Approaches 1.5 Ah/cc, based on above value of 600 Ah/kg
Milestone (a) completed: Nano-size tin materials synthesized

- **Method 2:**
 - FeCl₃ and SnCl₂ reacted with NaBH₄ by solvothermal treatment at 200 ºC
 - Product is Sn₂Fe with particle size less than 100 nm
 - Trace amounts of Sn remaining lead to capacity fade as in pure tin

(Left) XRD patterns of (A) Solvothermally formed Fe-Sn; (B) Planetary ball-milled (pBM) Sn-Fe-C composite; (C) High-energy ball-milled (HEBM) Sn-Fe-C composite. Sn metal phase in the solvothermally formed material disappears after high-energy milling with graphite. (Right) Electrochemical cycling of this Sn-Fe alloy in two voltage windows; no grinding with carbon. The current was 0.3 mA/cm² in the 1st cycle and then changed to 0.5 mA/cm² thereafter.
Milestone (a) completed: Nano-size tin materials synthesized

• **Method 2:**
 - FeCl₃ and SnCl₂ reacted with NaBH₄ by solvothermal treatment at 200 °C
 - Product is Sn₂Fe with particle size less than 100 nm
 - Trace amounts of Sn remaining lead to capacity fade as in pure tin
 - Sn removed by grinding with carbon
 - Stable capacity can be obtained when high-energy ball-milling is utilized
 - But capacity drops to 400 mAh/g

(left) Original cycling of solvothermal Sn₂Fe, and (right) cycling of this Sn-Fe alloy after ball milling (planetary and high energy) in two voltage windows. The current was 0.3 mA/cm² in the 1st cycle and then changed to 0.5 mA/cm² thereafter.
Milestone (b) underway: Nano-size silicon material synthesized

- **Method 1:**
 - Si/MgO/graphite (SMOG) composite was synthesized by a two-step process high energy ball-milling reduced by Mg and carbon by mechanochemical methods
 - First step: SiO reduced by Mg by high energy ball-milling
 - Second step: Product of 1st step high-energy ball milled with carbon
 - Electrochemical behavior determined

![Graph](image)

Rate capability of SMOG electrode between 0.01 V and 1.5 V. (a) capacity on cycling at different current densities; (b) cycling curves at different rates, and Ragone plot for Li insertion. 1 C rate = 2.8 mA/cm². The first cycle current density was 0.3 mA/cm².
Milestone (b) completed: Nanosilicon synthesis and electrochemical behavior

- **Method 2:**
 - Etching Al-Si alloy
 - Gives porous Si with 3D network
 - XRD data yields a lattice parameter larger than pure Si
 - EDS ~5 wt. % Al uniformly distributed in this material
Milestone (b) completed: Nanosilicon synthesis and electrochemical behavior

- Electrochemical behavior determined
 - This porous nanosilicon material shows high lithium capacity
 - Breaking the spheres enhances the contact between silicon and carbon, improving capacity retention

Electrochemical cycling of broken Si spheres (b-Si) and Si sphere (s-Si) materials at 0.5 mA/cm² between 0.01 V ~1.5 V. First cycle current density was 0.3 mA/cm². The electrodes were made of Si, carbon black additive and binder in a weight ratio of 70:20:10.
Collaboration and Coordination with other Institutions

- **Brookhaven National Laboratory**
 - Provided samples of the new Sn_5Fe compound
 - Electrochemical studies completed
 - Ex-situ and in-situ synchrotron X-ray diffraction, PDF (pair distribution function) and XAS (X-ray absorption) studies

- **Lawrence Berkeley National Laboratory**
 - Working with BATT anode team comparing tin and silicon materials
 - Similar challenges, such as 1st cycle loss, being addressed
 - Umicore nanograin Si material for Si baseline standard

- **Primet Precision (Ithaca Co)**
 - Collaboration underway on nanosizing materials (Nano-scissoring™)

- **NYBEST (New York Battery and Energy Storage Technology Consortium)**
 - Building collaborations between Industry, Academia, and Government
Future Work

• **Nano-Sn$_2$Fe**
 – Optimize synthesis methods
 • Mechanochemical method
 – Find viable source of iron for scale-up, that maintains nano-size
 • Solvothermal method
 – Eliminate tin metal and oxide impurity
 – Increase capacity
 – Make GO/NOGO decision
 – Reduce first cycle loss
 • Find optimum carbon and titanium content
 – Fully understand the reaction mechanism

• **Nano-Si**
 – Investigate other reductants, such as titanium
 – Reduce 1$^{\text{st}}$ cycle loss
 – Improve cycling performance
Summary

• **Nano-tin**
 – Discovered the excellent electrochemical behavior of nano-Sn$_2$Fe
 • Equal to SONY SnCo-C anode in capacity and rate capability
 – GO for replacement of SnCo-C
 • Doubles the volumetric capacity of carbon
 – GO for replacement of carbon anode
 – Need to understand role of carbon – what is LiC$_2$?
 – Found two synthesis methods for nano-Sn$_2$Fe
 • Mechanochemical method – GO
 – Need to reduce first discharge excess capacity
 • Solvothermal method – needs improvement

• **Nano-silicon**
 – Formed by two different methods
 • Nano-silicon formed from Al-Si alloy
 – Unique morphology
 – Preliminary electrochemical results look promising - GO
 • Nano-silicon formed from SiO
 – Lower capacity