Super Truck – 50% Improvement In Class 8 Freight Efficiency

October 5, 2011
DDC: Rakesh Aneja, Sandeep Singh, Kevin Sisken
DTNA: Derek Rotz, Maik Ziegler

DTNA and DDC Super Truck Team
Super Truck Cross Functional Work Stream

- Engine Downsizing & Hybrid
- Waste Heat Recovery
- Aerodynamics
- Powertrain Integration
- Energy Management
- Parasitic Losses
- Weight Reduction

50% Increase in Freight Efficiency

Predictive Technologies
Super Truck Program Objectives

2 50% improvement in freight efficiency
2 Measured in ton-miles/gallon
2 Baseline: 2009 Cascadia with DD15 engine
2 Engine goal: 50% brake thermal efficiency
2 Base engine – 47%
2 Parasitics – 48%
2 Waste heat recovery – 50%

Thermal Efficiency vs BSFC

- 50% eff = 0.167 kg/kWhr
- 55% eff = 0.152 kg/kWhr

Engine Thermal Efficiency (%)

<table>
<thead>
<tr>
<th>BSFC (kg/kWh)</th>
<th>0.230</th>
<th>0.220</th>
<th>0.210</th>
<th>0.200</th>
<th>0.190</th>
<th>0.180</th>
<th>0.170</th>
<th>0.160</th>
<th>0.150</th>
<th>0.140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Thermal Efficiency (%)</td>
<td>35.0</td>
<td>40.0</td>
<td>45.0</td>
<td>50.0</td>
<td>55.0</td>
<td>60.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supertruck Design Complete

Supertruck Targets Set (Component Level)

SuperTruck Shortlist Defined

Supertruck Specification Complete (target conflicts resolved)

Submit Final Scientific / Technical Report

Supertruck Program Complete
Roadmap: Vehicle-Side Technologies

Freight Efficiency Improvement (FEI)

- **Aerodynamic Drag Reduction**
- **Rolling Resistance Reduction**
- **Intelligent Controls**
- **Weight Savings**
- **Other Regen.**
- **Braking Regen.**

Categories:
- **External Aerodynamics**
- **Tires**
- **Energy Mgt.**
- **Powertrain Integration**
- **Materials**
- **Hybrid**
- **Idle Reduction**
- **Parasitic Losses**
External Aero: Wind Tunnel and CFD Study

Design Option 1

Design Option 2
Idle Reduction Technologies

Objective: 4% Freight Efficiency Improvement over baseline (*main engine idling*)

Solid-Oxide Fuel Cell APU

Image shown with permission from Delphi Corporation

Results: SOFC-APU installed & tested on Cascadia, fuel measurement

Characteristics:
- Enables full-engine off operations

NEXT STEPS: evaluation / selection of preferred SuperTruck concept based on representative test cycles

Hybrid System

Results: concept defined, preliminary energy calculations completed

Characteristics:
- Fast on/off time
- No dedicated added weight
Horsepower Rating Criteria

Over the past 20 years, ratings drifted higher, resulting in higher speed on grades, fewer shifts and increased driver satisfaction.

Balancing driver satisfaction vs. fuel economy is an interesting challenge.
2009 Engine Performance at Higher NOx
Combustion System Investigations

- Evaluating various 2-step piston bowls
- Results vary by bowl shapes, but overall 2-step bowls show significant smoke reduction, but no bsfc improvement.
- Follow-on: heads with higher swirl level are being procured to quantify potential impact.
Aftertreatment Development

- Aftertreatment focused on next generation materials
- Lower dP and improved DEF-SCR efficiency
- New DOC material for reduced back pressure
- New DPF material for lower pressure drop while maintaining soot storage capability
- New DEF-SCR for higher efficiency
- All hardware at canner
- Testing will be initiated shortly
Parasitic Reduction – 4% bsfc

- Multiple systems being optimized.
 - Kit and engine friction, and “smarter” accessory loads
- Progress to date
 - 1.5% improvement demonstrated in test cell and on vehicle.
 - Parts on order to allow demonstration of an additional 1.5%
 - Feasibility study underway for further improvements of >1%
- Partnered with Massachusetts Institute of Technology (MIT)
Predictive Controls

- Increasingly complex calibration
 - More degrees of freedom
 - Additional actuators
 - Vehicle integration
 - Refined optimizations

- More stringent requirements
 - Control stability
 - Transient response
 - Fuel economy
 - Urea consumption
 - Emissions
 - Life-cycle cost
 - Durability
 - Diagnostics
Control System Features

- Develop a **map-less, predictive, empirical** engine controller
- Reduce calibration and controller complexity
- Include an on-board fuel efficiency optimizer

Calibration Constraints
- Drivability
- Durability
- Fuel economy
- Life-cycle cost
- NOx / PM / NMHC / CO₂
- OBD
- Exhaust temperature
- GPS / Route / Traffic info.

- Easier to calibrate (mitigate control complexity)
- Remain optimized through transient operation.
Controller fully operational – validation and development in transient test cell

Preliminary vehicle testing initiated
Waste Heat Recovery

- Approx. 55% of fuel energy is “waste heat”
- Waste heat recovery
 - Turbocompound – being evaluated
 - Rankine cycle – recover energy from EGR and/or exhaust gases
 - 5% BSFC improvement targeted.
 - Significant technical challenges
 - Heat exchangers, expander, compressor, packaging, engine integration, etc
- Development Partners
 - Oak Ridge National Laboratory
 - Daimler Advanced Engineering Group
Simulation and Packaging

- Multiple simulation tools being used
- Performed at ORNL and Detroit
- Component testing @ Daimler Research
- Packaging studies underway
Rankine System – Major Components

Evaporator
Transfer exhaust and/or EGR energy to working fluid.

Pump
Hermetically sealed Diaphragm pump

Working Fluid
Ethanol
Low environmental impact. Suitable thermodynamic properties

Condenser
Rejected heat will be released under hood

Expander
Handle 2-phase flow, high speed operation for electricity generation
Acknowledgments

Department of Energy Headquarters
 2 Gurpreet Singh
 2 Roland Gravel

National Energy Technology Laboratory
 2 Carl Maronde

This material is based upon work supported by the Department of Energy National Energy Technology Lab under Award Numbers 409000-A-N8, DE-FC26-00-OR22805, and DE-EE-0003348.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.