Fabrication of A Quantum Well Based System for Truck HVAC

J.C. Bass V. Jovanovic S. Ghamaty
D. Krommenhoek
Hi-Z Technology , Inc.

2nd Thermoelectric Applications Workshop
January 3 - 6, 2011
Del Coronado Hotel, San Diego, CA
Outline of Talk

• Measurement of Quantum Wells
• COP of Coolers
• Design Considerations
• Examples of Design
• HVAC System Design
• Construction of Module
• Present Status
• Conclusions
Property Measurement

- Measured by Outside Source
- Excellent Properties both Cooling and Power Production
- Material Measured Si/SiGe, $\text{B}_4\text{C}/\text{B}_9\text{C}$ and Other Quantum Wells
Measured Data

• Multi-Layer Films

- Si/SiGe
 - Si Substrate
 - Kapton Substrate

- B$_4$C/B$_9$C
 - Si Substrate

- B$_4$C/B$_9$C- Si/SiGe Couple
 - Si Substrate
Hi-Z fabricates and uses the films “In Plane”

Heat and Current are “In Plane”

Hi-Z approach: Substrate and film are parallel to current flow

Substrate and film are perpendicular to current flow

Heat and Current are Cross Plane
Predicted QW TE Figure of Merit, ZT, as Function of Temperature and Compared with SOTA (Bulk) Thermoelectrics
Coefficient of Performance of QW and SOTA Thermoelectrics and SOTA Mechanical Vapor Compression Systems; COP as A Function of Cooler ΔT
Design Considerations

Substrates Selected Acts as Thermal Bypass

- Decreases overall efficiency
- Values of Thermal K Can Vary by 4 Orders of Magnitude
- Porous Si possible candidate
 - Low Thermal K
 - Expensive
 - Low Strength
- Glass or Kapton Can be Used, Low K
Ring Converter

Circular Device

- N on one side P on other
- 26 Couples Deposited on Kapton
- Two Couples removed
 - Contacts deposited
 - Tested

- Numerous Applications
 - Power Supply for sensors
 - Possible use in mW RTG
 - Spot Cooler Applications
QW N- and P- Type Si/SiGe Two Couple Device on Kapton®. The Mo was deposited by an improved sputtering process yielding the first QW device on Kapton®.
Thermoelectric Properties of QW Device on Kapton® Substrate with Mo Contacts Compared to Calculated Values:
Each N and P leg is 200 periods of Si/SiGe, and each layer is 100 Å thick (total 4 μm). Each legs area is ~0.07 in. x 0.2 in. The Kapton® is 0.005 in. thick. The performance is compared to current bulk thermoelectric material.

<table>
<thead>
<tr>
<th></th>
<th>EXPERIMENTAL QW RESULTS</th>
<th>CALCULATED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 Couples Measured at ΔT = 40°C</td>
<td>2 Couples Measurements Extrapolated to 26 Couples at ΔT = 40°C</td>
</tr>
<tr>
<td>Voltage</td>
<td>225 mV</td>
<td>2.93 V</td>
</tr>
<tr>
<td></td>
<td>0.371 mW</td>
<td>4.82 mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QW with ZT ~ 3.0</td>
<td></td>
<td>Bulk (Bi,Sb)₂(Se,Te)₃ with ZT ~ 0.75</td>
</tr>
</tbody>
</table>
Test Results of Si/SiGe QW Leg on Kapton® Substrate Operated as a Cooler
Single Leg Cooler

- $\text{B}_4\text{C}/\text{B}_9\text{C}$ On Si Substrate
- Copper Wire for Other Leg
P-Type B_4C/B_9C QW Film Joined to a Copper Wire Operating as a Cooler
HVAC Systems Design
Flow Systems Considered

Figure 2a. Parallel Flow System

Figure 3a. Counter Flow System
One Side of Cooler/Heater

Cooler Showing Heat Exchangers and Fan
One Side of Cooler Heater

Picture of Side of Cooler Showing Fan and Heat Sinks
Complete Cooler/Heater

Both Covers in Place, Ready for Operation
Construction of Module

- Multilayer Film Deposited on Substrate
- Use as in
- Transfer to Alternative Substrate and Remove the Original Substrate
- Use a Si Substrate and Remove it
- Clean Ends of Elements, add Deposit Metallic Contacts
- Deposit Directly on Kapton or Other Low K Material
- Cut Deposited Material to Leg Size Elements
- Stack Elements to Form N and P Legs
- Insert Legs into Egg Crate
- Apply Material by Spraying
- Lap to Finish Module
Either N-type or P-type quantum well (QW) thermoelectric material are deposited on the surface of the substrate wafers. After being sectioned into leg parts, the parts are stacked together to form one ‘leg’ (P or N) of a thermoelectric power-generating or cooler P-N ‘couple’.

![Diagram of a typical bulk material couple and a quantum well couple](image-url)

- **Typical Bulk Material Couple**
- **Quantum Well Couple**
Kapton Films

Figure 1. Mask used to deposit films

448 Samples deposited on Kapton with Mask of Figure 1
By electrically connecting many couples in series, a quantum well thermoelectric module is created. The ‘eggcrate’ effectively arranges each of the legs in a series circuit. The modules (Hi-Z commercial shown) are finished by adding flat, thermally conductive surfaces to each side.
Present Status

- Currently Operating Cooler
 - Using HZ-14 Modules in Leu of Q.W.
- Checked Heat Exchangers for Pressure Drop
- Running HZ-14 Modules to Check Temperature
- Fabricating Q.W. Elements
- Cleaning and Depositing Metal for Contacts
- Building Equipment for Crystallization Process
Summary

- Film Started
- Eggcrate Design Completed
- Cooler/Heater Built
- Cooler/Heater Tested with HZ-14 Modules
- HZ-14 Modules to be replaced with Q.W.
- Calculations Indicated Operation Should Equal or Better Than Vapor Compression
 - Solid State
 - No Gasses
 - No Moving Parts Except Fans
- Can be Used as a Heater by Reversing Polarity
Acknowledgement

This work is sponsored by the Department of Energy

Under Contract DE-FG02-08ER 5066