Characterization and Development of Advanced Heat Transfer Technologies

Kenneth Kelly
National Renewable Energy Laboratory
2009 DOE Vehicle Technologies Annual Merit Review
May 22, 2009

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Project Start: FY 2008
- Project End: FY 2010
- Percent Complete: 66%

Budget
- Total Funding (FY07-FY10)
 - DOE: $825K
 - Contract: $0K
- Annual Funding
 - FY08: $375K
 - FY09: $450K

Partners/Collaboration
- Electrical and Electronics Technical Team (EETT)
- Semikron, Delphi
- Purdue University, University of Colorado, Wisconsin University
- NASA, ONR, IAPG

Barriers
- Cost ($/kW)
- Specific Power (kW/kg)
- Power Density (kW/L)
- Efficiency
Problem Statement

• Low-cost / high performance thermal solutions are critical to achieving program targets – increased power density, specific power, and lower cost.

• Many advanced heat transfer technologies focus on high performance but tend to add system complexity and cost.

• Automotive PE systems may be over-designed or de-rated to compensate for thermal limitations.
Objectives

- Characterization and development of candidate heat transfer technologies which have the potential in enabling low-cost thermal solution for Automotive Power Electronics.

- Enable improved power density and system cost reductions through effective heat transfer performance in conjunction with lower cost materials.
Milestones (FY08 & FY09)

FY08

Report on status and results of the thermal control technology R&D (September 2008):

• Completed testing and evaluation of baseline elliptical pin-fin and low thermal resistance heat exchangers with Semikron inverter.
• Demonstrated Testing showed over 35% decrease in thermal resistance and improved temperature uniformity.
• Presented integrated modeling process to evaluate tradeoffs between thermal performance and low-cost material selection.

FY09

Evaluate potential for implementing low-cost materials with aggressive heat transfer (July 2009).

Report on status and results of the thermal control technology R&D (September 2009).
Approach

• **Indentify** potential heat transfer technologies through interactions with industry and research partners.
 – Literature search
 – Industry and research partner interactions

• **Objective and consistent characterization** of thermal performance of promising technologies relative to automotive requirements.
 – Move from fundamental to practical based solutions

• **Development** of most promising technologies based on automotive packaging and performance constraints with focus on enabling increase power density with lower system cost.
 - Design optimization with regard to industry partner requirements
 - Experimental characterization of final packaged prototype

• **Transfer** knowledge to industry partners.
Approach

Improve PE device efficiency (ORNL)

Maximize base plate temperature
- PE materials selection
- Reduce thermal resistance

\[Q = h A (T_B - T_C) \]

coolant temperature

Increase surface area
- fin shape optimization
- double sided cooling
- surface enhancements
- thermal Spreading

Enhance heat transfer coefficient
- jet / spray cooling
- self-oscillating jets
- phase change
Technical Accomplishments

Completed testing of “Low Thermal-Resistance Power Module Assembly” demonstrated with Semikron inverter.

- Tests showed 35% reduction in overall thermal resistance (junction to coolant)
- Enables high temperature coolants
 - 200 W/cm² heat dissipation
 - 105 °C inlet coolant, Tmax = 150 °C
- Achieved thermal performance without increased pressure drop / parasitic power
- Improved temperature uniformity
- Elimination of TIM layer
- Potential for reduced cost, weight, and volume

The technology is adaptable to other package configurations.
Technical Accomplishments

IGBT Test, 1000 W, 10 lpm, 35 W/cm²

Die Temperature (in °C)

Distance from Inlet to Outlet (in mm)

Baseline

Low R_{th} Design
Technical Accomplishments

IGBT Heating Analysis - 200 W/cm²

Temperature (°C)

Distance from die (mm)

Low Rth

Baseline

Tin = 105 °C
Technical Accomplishments

Parametric Jet Simulation Studies

- Conducted initial parametric investigations of packaging effects.
- Excellent correlation with experimental results.
- Peak heat transfer coefficient \((h) \) confined to small target area.

Conclusions

- Jet cooling system must be optimized for a specific package.
- Combining jet impingement with surface enhancement \((h \times A) \) to maximize overall performance.
Technical Accomplishments

Materials exploration studies: Trade-off between Cost and Performance

Developed basic framework for rapid assessment of interactions between thermal packaging topologies, materials, and thermal performance

Low-cost alternate materials are enabled by advanced thermal control (advanced cooling technologies in conjunction with novel thermal packaging topologies).
Technical Accomplishments

Initiated Surface Enhancement Study –
Objective: Low-Cost, High Performance Area Enhancement

• Identified candidate surface enhancement geometries through literature search
• Initiated testing with NREL’s jet impingement test fixture
• Completed testing of several candidate geometries
Key Accomplishments during prior FYs

- Optimized pin-fin design transferred to Semikron
- Awarded patent for “Low Thermal Resistance Power Module Assembly”.
- Published detailed experimental characterization of self-oscillating jet technology.
- Published experimental and modeling characterization of two-phase with R134A for both jets and spray cooling.
Future Work: FY2009 & FY2010

• Complete experimental evaluation of surface enhancement structures.

• Transfer most promising surface enhancement approaches that combine high performance with low cost manufacturing.

• Evaluate thermal performance of future refrigerant fluid(s) for two-phase cooling of electronics (HFO1234xy).

• Evaluate the potential of electrically activated heat transfer enhancements.
Summary

- Characterization and development of candidate heat transfer technologies which have the potential in enabling low-cost thermal solution for Automotive Power Electronics.
- Enable improved power density and system cost reductions through effective heat transfer performance in conjunction with lower cost materials.
- Identify potential heat transfer technologies
- Objective and consistent characterization relative to automotive requirements.
- Development of most promising technologies
- Transfer knowledge to industry partners.
Summary

Technical Accomplishments

• Completed testing of “Low Thermal-Resistance Power Module Assembly” integrated with Semikron inverter.
• Testing showed over 35% decrease in thermal resistance and improved temperature uniformity.
• Parametric investigation of package-specific jet impingement design parameters.
• Integrated modeling approach to evaluate tradeoffs between thermal performance and material selection.

Collaborations

• Semikron – collaborative development and demonstration of jet impingement in Semikron inverter.
• Delphi – performance data fed into parametric technology investigation.
• Universities – migration of fundamental research to practical solutions / correlation of test results.
• NASA / ONR / IAPG – two-way sharing of program information, concepts and results.