High Temperature, High Voltage Fully Integrated Gate Driver Circuit

Laura Marlino
(for Leon Tolbert)
Oak Ridge National Laboratory
May 21, 2009

Project ID: ape_03_marlino

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
• Start Date: Oct. 2008
• End Date: Sept. 2011
• 20% Complete

Budget
• DOE Share – 100%
• FY09 received: $367K
• FY10 requested: $364K

Barriers
• Highly integrated gate drive
 – Reduced volume and weight
 – Higher temperature tolerance / reduced cooling needs
 – Universal integrated module
• Vehicle Technology Program Targets
 – DOE 2015 target: 105°C coolant

Partners
• Development:
 The University of Tennessee
• Field Testing:
 GM ATV, AFRL
Objective

• Develop a highly reliable, integrated gate drive circuit that is capable of operating at high temperatures while driving GaN or SiC JFETs or MOSFETs

• FY09
 – Design, fabricate, test a silicon on insulator (SOI) chip that has robustness for wide temperature range (-40°C to 175°C ambient)
 – Incorporate several protective features (over current, over temperature, under voltage)
Milestone

- August 2009: Successfully demonstrate that the fabricated SOI gate drive chip can act as a gate driver over a wide temperature range for prototype SiC MOSFETs and JFETs obtained from suppliers.

- Go/No Go - Ability of SOI chip to drive SiC FET over wide temperature range (-40 °C to 175 °C)
Approach

• SOI-based high-temperature, high-voltage gate driver will be developed that can work up to 175°C ambient.
• Improve circuit topology for reliable and repeatable performance at elevated temperatures.
• Test prototypes to support a variety of SiC-based or GaN-based power switches (JFETs and MOSFETs) as they become available. Driver designed as a “universal gate drive” to meet various FET specs.
• Incorporate protection features, such as short circuit protection, under voltage protection, and embedded temperature sensors to enhance robustness.
• Successful execution of this research combined with commercially available WBG-based power switches will help realize high-temperature DC-DC converters and traction drive systems (inverters) for HEVs.
Description of Silicon-on-Insulator (SOI) Technology

- High-temperature, high-voltage fully integrated gate driver based on Bipolar-CMOS-DMOS on Silicon-on-Insulator (BCD on SOI) technology

- SOI offers inherently low leakage current and latch-up immunity, thus enabling circuits to operate at higher temperature than their bulk Si-based counterparts.

- Novel circuit design approach to provide gate driver circuit performance insensitive to temperature variation
FY08 Technical Accomplishments
(high temp gate drive work funded by a previous project)

• Prototype of a high-temperature, high-voltage integrated circuit gate driver, designed and fabricated using a BCD-on-SOI process from Atmel in 2008.
• Successfully tested at low voltages (up to 320 V) with SiC MOSFETs and JFETs at 200°C without any heat sink and cooling mechanism.

Chip size 5 mm² (2,240 µm × 2,240 µm)
Prominent Features of SOI Chip

- High source and sink current capability: peak 2.3 A @ 27°C and 1.7 A @ 200°C ambient
- Gate drive supply range from 10 V to 40 V p-p
- High operating temperature: 200°C ambient without any cooling mechanism
- High capacitive load drive capability: 10 nF in < 100ns @ 200°C

Die area of 5 mm² (2,240 µm × 2,240 µm) including bootstrap capacitor, voltage regulator, pad frame, and ESD protections.
- 0.8-micron, 2-poly and 3-metal BCD on SOI process from Atmel has been used.

Chip size 5 mm² (2,240 µm × 2,240 µm)
Driving Cree SiC MOSFET with the Gate Driver Chip at 200°C ambient
Driving SiC JFET

- SiC JFET used for this test is a normally ON (depletion mode) type device
- Gate voltage applied to the gate of the JFET was +3V to −22V (w/ grounded source)

Driving SemiSouth SiC JFET with gate driver chip at 215°C ambient
FY09 Technical Accomplishments

- A new SOI chip has been designed, had layout, post layout simulation and submitted for fabrication in April.
- Redesigned top-side buffer in core gate drive circuit using 5 V PMOS with “neighboring box” and regular 5 V NMOS instead of 45 V devices (PMOS and NMOS). 82% die area savings achieved compared to the previous top-side buffer.
- Additional protection circuitry to turn device off in event of load short circuit, over temperature, and under voltage.

Schematic of prototype SOI gate driver circuit
Future Work – FY09

• Receive fabricated and packaged SOI chips – expected late June 2009
• Fabricate and populate polymide high temperature test board
• Test prototype circuits with SiC power MOSFETs and JFETs
Future Work – FY10 and beyond

- Increase output current rating of gate drive to handle large power electronic modules.
- Incorporate digital slew rate control in gate drive so that it can adapt to different devices and not cause transient over voltages during switching by controlling \(\frac{dv}{dt} \) during switching.
- Investigate integrating gate drive with SiC switches into an intelligent power module.
Summary

- A highly integrated, high temperature gate drive is being developed for use with future wide band gap (silicon carbide and gallium nitride) switching devices.
- Universal drive that is capable of driving a wide variety of devices including MOSFETs, JFETs, and IGBTs.
- Gate drive will be an enabling technology for using power electronics at higher temperatures.