Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support of HCCI Emission Control

Ken Rappé
Pacific Northwest National Laboratory
May 19, 2009

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Start – February 2005
- Finish – February 2009
- 100% Complete

Budget
- Total Project Funding
 - DOE – $1,350K
 - CRADA
- Funding received in FY08
 - $350K
- Funding received in FY09
 - $350K

Barriers
- LTC HC & CO emissions
- High exhaust gas temp. requirements
- Catalyst fundamentals

Partner
- Caterpillar, Inc.
- CRADA
 - Work-in-kind contribution
- Project lead
 - Dr. Ronald Silver
Objectives

Develop low-temperature HC & CO oxidation catalysts to enable HCCI application

Specifications to vendors:

- **HC oxidation**: 90% at 175°C and higher
- **HC light-off**: 50% at < 150°C
- **CO oxidation**: 99% at higher temperatures
- **CO light-off**: 50% at < 150°C

Akin to the cold start problem, except the exhaust never reaches light-off temperatures on commercial catalysts.
Milestones & Approach

► Milestones for the past two years of effort
- Complete bench-scale assessment of transients
 - Completed
- Complete optimization of monolithic formulations
 - Completed
- Complete steady-state and transient engine testing
 - Completed

► Approach
- Catalyst formulation, characterization & screening
- Assess monolith-supported catalysts
- Bench scale transient studies
- Catalyst scaling for engine testing
- Engine testing: steady-state and transient
- Correlation between bench & engine scale
Addition of praseodymium (Pr) enhances low-temperature REDOX capacity of the CeO$_2$ catalyst, improving the low-temperature oxidation capacity.

Ce$_x$Pr$_{1-x}$O$_2$ System Investigations:

Varying Pr levels in Pd/CeO$_2$ system

Improvements needed to improve paraffinic activity of the system.
Technical Accomplishments – FY08/09

2%Pt/Ce\textsubscript{0.9}Pr\textsubscript{0.1}O\textsubscript{2} system: Catalyst pretreatments investigated in an attempt to improve activity of system.

Surface pre-sulfation significantly improves propane activity of the system.
2%Pt/Ce$_{0.9}$Pr$_{0.1}$O$_2$ system

Effect of different catalyst pretreatments: TPR results

Features:
- 100°C – Pt-oxide reduction
- 350°C – surface ceria/praseodymia reduction
- 440°C – sulfated ceria/praseodymia species
- 700°C – bulk ceria reduction

► (NH$_4$)$_2$SO$_4$ & H$_2$SO$_4$ pretreatment improve reducibility of Pt-oxide species
► Formation of new sulfated feature at 440°C
Technical Accomplishments – FY08/09

2%Pt/Ce$_{0.9}$Pr$_{0.1}$O$_2$ system

Effect of different catalyst pretreatments: BET results

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Surface area (m2/g)</th>
<th>Pore volume (cc/g)</th>
<th>Pore size (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2%Pt/Pr${0.1}$Ce${0.9}$O$_2$</td>
<td>46.20</td>
<td>0.2374</td>
<td>173.1</td>
</tr>
<tr>
<td>2%Pt/Pr${0.1}$Ce${0.9}$O$_2$-H$_2$SO$_4$</td>
<td>45.87</td>
<td>0.2829</td>
<td>184</td>
</tr>
<tr>
<td>2%Pt/Pr${0.1}$Ce${0.9}$O$_2$-(NH$_4$)$_2$SO$_4$</td>
<td>44.91</td>
<td>0.2697</td>
<td>184.2</td>
</tr>
<tr>
<td>2%Pt/Pr${0.1}$Ce${0.9}$O$_2$-HNO$_3$</td>
<td>51.26</td>
<td>0.06717</td>
<td>14.73</td>
</tr>
<tr>
<td>2%Pt/Pr${0.1}$Ce${0.9}$O$_2$-ammonia</td>
<td>47.29</td>
<td>0.2304</td>
<td>185</td>
</tr>
</tbody>
</table>

► Textural properties of system (SA, PV, PS) relatively unaffected by pre-sulfation of catalyst surface.
Technical Accomplishments – FY08/09

2\%Pt/Ce_{0.9}Pr_{0.1}O_{2} system

Effect of different catalyst pretreatments: XPS results

- S^{6+} identified at ~169 eV, indicating sulfate feature.
- Relative ratio of peaks at 529, 532 eV indicates more oxygen shifted to higher binding energy, likely indicating presence of a SO_{4}^{2-} feature.
Technical Accomplishments – FY08/09

2%Pt/Ce$_{0.9}$Pr$_{0.1}$O$_2$ system

Effect of different catalyst pretreatments: XPS results

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Pt$^{2+}$ (%)</th>
<th>Pt$^{4+}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt/Pr${0.1}$Ce${0.9}$O$_2$</td>
<td>57.5</td>
<td>42.5</td>
</tr>
<tr>
<td>Pt/Pr${0.1}$Ce${0.9}$O$_2$-H_2SO_4</td>
<td>47.1</td>
<td>52.9</td>
</tr>
<tr>
<td>Pt/Pr${0.1}$Ce${0.9}$O$_2$-$\text{(NH}_4\text{)}_2\text{SO}_4$</td>
<td>43.5</td>
<td>56.5</td>
</tr>
</tbody>
</table>

- Pt state affected by sulfation.
- Effect of SO$_4^{2-}$ strong electron-withdrawing capacity.
2%Pt/Ce$_{0.9}$Pr$_{0.1}$O$_2$ system

Proposed ‘improved’ propane oxidation mechanism

Propane adsorption – hydrogen extraction generally accepted as the rate determining step in the process.
2%Pt/CexCo1-xO2 system interrogation: Co employed in an attempt to improve paraffinic activity of the system.

C3H8 activity of system improved with blending of small amounts of Co into CeO2 system.
Technical Accomplishments – FY08/09

2%Pt/CexCo1-xO2 system interrogation: BET results

<table>
<thead>
<tr>
<th>Catalyst name</th>
<th>Surface area (m²/g)</th>
<th>Pore volume (cc/g)</th>
<th>Pore size (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt/Co0.1Ce0.9O2</td>
<td>75.81</td>
<td>0.2665</td>
<td>152.3</td>
</tr>
<tr>
<td>Pt/Co0.3Ce0.7O2</td>
<td>48.67</td>
<td>0.1934</td>
<td>123.6</td>
</tr>
<tr>
<td>Pt/Co0.5Ce0.5O2</td>
<td>37.60</td>
<td>0.2008</td>
<td>123.2</td>
</tr>
<tr>
<td>Pt/Co0.9Ce0.1O2</td>
<td>9.727</td>
<td>0.03715</td>
<td>24.98</td>
</tr>
<tr>
<td>Pt/Co3O4</td>
<td>1.567</td>
<td>0.08406</td>
<td>28.8</td>
</tr>
</tbody>
</table>

- Textural properties remain intact with blending of small amount of Co into CeO₂ system (10%).
- Larger amounts of Co result in moderate to significant structural changes.
Technical Accomplishments – FY08/09

2%Pt/\text{Ce}_x\text{Co}_{1-x}\text{O}_2 \text{ system interrogation: SEM studies}

- Small amount of Co (10%) shows surface effects only
- Significant morphological differences with larger amounts of Co
Technical Accomplishments – FY08/09

2%Pt/CexCo1-xO2 system interrogation: XRD analyses

- CeO2 peaks (◊) remain relatively strong through 50% Co blending.
- Appearance of platinum peaks (*) indicates strong Pt agglomeration with larger (>50%) amounts of Co blended into system.
Technical Accomplishments – FY08/09

2%Pt/CexCo1-xO2 system interrogation:
Platinum particle size

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Pt/C3O4</th>
<th>Pt/C0.9Co0.1O2</th>
<th>Pt/C0.5Ce0.5O2</th>
<th>Pt/C0.3Ce0.7O2</th>
<th>Pt/C0.1Ce0.9O2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt (nm)</td>
<td>39.9</td>
<td>37.9</td>
<td>22.4</td>
<td>N. A.</td>
<td>N. A.</td>
</tr>
</tbody>
</table>

- Pt metal remains well dispersed with moderate amounts of Co blended into the CeO2 system.
- Significant metal agglomeration obvious with larger amounts of Co as indicated in XRD analyses.
Technical Accomplishments – FY08/09

2%Pt/CexCo1-xO2 system interrogation:
TPR investigations of supports only

- Co feature reduced from 397°C to 324°C with larger amounts of ceria in the sample. Surface ceria feature at 500°C improved in the presence of Co to ~280°C with 10% Co.
- Indicates strong synergistic effects between metals.
Technical Accomplishments – FY08/09

2%Pt/CexCo1-xO2 system interrogation:
TPR investigations of catalysts

- Ce/Co combined samples promote Pt reduction at lower temperature (100°C/132°C).
- Ceria promotes improved Co reduction from 310°C to 241°C, analogous to support only interaction. Surface ceria feature captured there with small to moderate Co amounts in catalyst.
PNNL & Caterpillar® diesel oxidation catalysts
- 2.47 L each
- 25% total flow: 35K/hr to 122K/hr SV

Catalyst Supplier oxidation catalyst
- 17 L
- 100% total flow: 13K/hr to 26K/hr SV.
6-inch Monolith Brick Coating Details

6 inch diameter 5 ¾ inch height. 1159 gram weight, washed by acetone, 2-propanol, 10% HNO₃, and rinsed with D.I. H₂O to pH >5. Dried in air.

Slurry:

Ce₀.₉Pr₀.₁O₂ was prepared by calcination of Pr(NO₃)₃ and Ce(NO₃)₃ aqueous solution in air at 650°C for 4 hours

Aqueous slurry of 12 wt% Ce₀.₉Pr₀.₁O₂ was prepared by ball-mill

Coating:

Dipped dried brick into slurry followed by drying in vacuum oven at 70°C. Same procedure was repeated 3 times to get ~20 wt% loading. Brick was then calcined at 450°C for 4 hours.

2 wt% Pd coating:

Pd was coated on Ce₀.₉Pr₀.₁O₂ loaded brick using 4 wt% Pd(NH₃)₄(NO₃)₂ aqueous solution via wetness impregnation method followed by vacuum drying at 80°C and calcination at 450°C for 4 hours.
Normalizing for Space Velocity

Caterpillar Engine Testing

Normalizing for space velocity (assuming 1st order kinetics and mass transfer limitation)
Allows comparison of PNNL/CAT catalysts to SV of a commercial supplier catalyst at total flow

\[\eta(\xi) = 1 - \left[1 - \eta(\xi_0)\right]^\frac{\xi_0}{\xi} \]

\(\eta \) = fractional NOx conversion efficiency
\(\xi \) = space velocity (SV) of interest
\(\xi_0 \) = reference SV at which conversion efficiency is known
Engine Testing

Carbon Monoxide (CO) Results

Supplier catalyst: 240% precious metal loading vs. PNNL catalyst.

T_{50}^{CO} target (150°C) nearly reached with PNNL catalyst!
Engine Testing

Ethylene (C_2H_4) Results

Neither sample exhibited good C_2H_4 activity.
Engine Testing

Unburned Fuel (>C₅) Results

PNNL catalyst reached $T_{90\text{HC}} @ <240^\circ\text{C}$.
Catalyst supplier did not achieve $T_{90\text{HC}}$ until almost 350°C!
Highly thermally-conductive pellet loaded with catalyst powder inside inconel 600 device. Nickel 200 resistive wire heater encapsulated by double-glass insulation. Two thermocouples, one inside pelleted support, one outside housing.

U.S. Heavy Duty Federal Test Procedure (FTP)
Temperature control achieved using external/internal thermocouples in conjunction with predictive algorithm driving the heater profile against a constant cooling load.
Transient Testing – HCCI

Assumptions:

- Heavy Road Idle (IdleHR) – 150°C
- HCCI Idle (IdleHCCI) – 125°C
- Heavy Road High Speed/High Load (HLHR) – 450°C
- HCCI High Speed/High Load (HLHCCI) – 325°C

\[
HCCI\ Transient = IdleHCCI + (HR\ Transient - IdleHR) \cdot \frac{HLHCCI - IdleHCCI}{HLHR - IdleHCCI}
\]
Transient Testing – HCCI

Transient Engine Temperature Profiling

- U.S. Heavy-Duty FTP
- HCCI FTP (estimate)

Temperature, °C

Time, minutes

Pacific Northwest
NATIONAL LABORATORY
Transient Testing – HCCI

>95% CO destruction over the entire transient cycle
Transient Testing – HCCI

>56% oxidation of 250 ppm NO over the entire transient cycle
Examined feasibility of formulation \((\text{Ce}_{0.8}\text{Pr}_{0.2}\text{O}_2)\) for contact soot oxidation.

Compared soot oxidation of Ce/Pr formulation to commercial supplier formulation.
Ce$_{0.8}$Pr$_{0.2}$O$_2$ provides significant enhancement of soot oxidation over soot alone and 2%Pd metal.
3:1 Mass Ratio Catalyst:Soot Mixture

Ce$_{0.8}$Pr$_{0.2}$O$_2$ provides significant enhancement of soot oxidation over commercial soot oxidation catalyst.
Summary

- Paraffin oxidation activity improved in systems via surface sulfation and via incorporation of small amounts of Co.
- Engine testing at Caterpillar, results are very promising.
- Transient testing has shown good transient CO oxidation capacity and good NO oxidation activity.
- Potential for contact soot oxidation applicability.

Targets

- CO light-off: 50% CO oxidation at 150°C
 - Successful in achieving CO light-off at well less than 100°C.
- CO oxidation: 99% at higher temperatures
 - Successful in achieving complete CO oxidation at 100°C and less.
- HC light-off: 50% HC oxidation at 150°C.
 - Successful in achieving C₂H₄ light-off at less than 100°C.
 - Have gotten C₃H₈ light-off to less than 300°C.
- HC oxidation: 90% HC oxidation at 175°C.
 - Successful in achieving >90% C₂H₄ oxidation at <100°C.
Acknowledgments

Ron Silver, Tom Paulson, Colleen Eckstein
– Caterpillar, Inc.

Ken Howden
– DOE OFCVT