Solid State Vehicular Generators and HVAC Development

John Fairbanks
Vehicle Technologies
Department of Energy

Carl Maronde, Samuel Taylor
National Energy Technology Laboratory

Mega Review
Arlington, Virginia
May 22, 2009
Competitive Award Selections
(March 2004 RFP)

<table>
<thead>
<tr>
<th>Awardees</th>
<th>Additional Team Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Efficiency Thermoelectric</td>
<td>University of Michigan, University of South Florida, Oak Ridge National Laboratory, and RTI International</td>
</tr>
<tr>
<td>General Motor Corporation and General Electric</td>
<td>BSST, LLC.</td>
</tr>
<tr>
<td>Michigan State University</td>
<td>Visteon, BMW-NA, Ford</td>
</tr>
<tr>
<td></td>
<td>NASA Jet Propulsion Laboratory</td>
</tr>
<tr>
<td></td>
<td>Cummins Engine Company</td>
</tr>
<tr>
<td></td>
<td>Tellurex, Iowa State</td>
</tr>
</tbody>
</table>
Thermoelectric Modules

Diagram showing the principles of thermoelectric energy conversion:

- **Cooling**
 - Heat rejection
 - p-type
 - n-type
 - Refrigeration

- **Heat source**
 - Heat sink
 - p-type
 - n-type
 - Power generation

Diagram also illustrates elements and connections involved in thermoelectric modules.
TE materials performance: Figure of Merit (ZT)

\[ZT = \frac{\sigma \alpha^2}{(\kappa_e + \kappa_L)} \cdot T \]

- **Electrical conductivity**
- **Seebeck coefficient or thermopower** \((\Delta V/\Delta T)\)
- **Total thermal conductivity**

\[\sigma \alpha^2 = \text{Power Factor} \]

\[\sigma = \frac{1}{\rho} = \text{electrical conductivity} \]

\[\rho = \text{electrical resistivity} \]

Slide courtesy of Oregon State University
Cobalt atoms form a *fcc* cubic lattice.

Antimony atoms are arranged as a square planar rings.

There are 8 spaces for the Sb$_4$ units.

6 are filled and 2 are empty.

\[\text{CoSb}_3 \ [\text{Co}_8(\text{Sb}_4)_6] \]

Atoms can be inserted into empty sites. Atoms can “rattle” in these sites – scatter phonons and lower the lattice thermal conductivity.

\[R_x\text{CoSb}_3 \]

Slide courtesy of Oregon State University
Thermoelectric Modules optimized for Thermal Zones

Slide courtesy of General Motors
Highest ZT Achieved in Triple-filled Skutterudites

\[ZT_{\text{ave}} = 1.1 \]
GM’s Thermoelectric Generator Vehicle: Chevy Suburban

- plenty of space and waste heat

Slide courtesy of General Motors
GM TE Generator on a Chevy Suburban

TEG installed in a rear drive vehicle. GM Suburban

Vehicle interface
- Coolant in (blue)
- Coolant out (red)
- Electric Pwr (yellow)

Exhaust gas bypass

Prototype TEG

DC/DC converter

Slide courtesy of General Motors Corp.
TEG Installed in BMW Series 5 Test Vehicle

Thermoelectric Generator

Courtesy of BSST
Vehicle 530iA at 130 km/h, Exhaust gas back pressure limited to 30mbar at 130km/h

Slide courtesy of BSST
TEG is ideally compatible with Regenerative Braking

Slide courtesy of BSST
Average demand for electric power
Fraction of electricity on total FC.

<table>
<thead>
<tr>
<th>Model</th>
<th>Average Demand (W)</th>
<th>Fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>116i</td>
<td>190</td>
<td>2%</td>
</tr>
<tr>
<td>530dA</td>
<td>330</td>
<td>3.5%</td>
</tr>
<tr>
<td>750iA</td>
<td>390</td>
<td>4%</td>
</tr>
<tr>
<td>BMW Sedans</td>
<td>750</td>
<td>6%</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
<td>8%</td>
</tr>
</tbody>
</table>

Thermoelectric Waste Heat Recovery.

Slide courtesy of BSST
Zonal TE devices located in the dashboard, headliner, A&B pillars and seats / seatbacks

Slide courtesy of BSST
COP Calculations – Traditional PTC in an EV Plus Enhanced CCS + Zonal Devices

Heating to driver = 500W
Total PTC heating to vehicle = 1200W
PTC COP = 1
CCS heating to driver = 100W
CCS COP = 2.5
Zonal TED heating to driver = 100W
Zonal TED COP = 2.5
Total power used = 1280W
COP Calculations – TE Central HVAC in an EV + Enhanced CCS + Zonal Devices

Heating to driver = 500W

Total TE central HVAC heating to vehicle = 1200W

TE central HVAC COP = 2.5 (assumed)

CCS heating to driver = 100W

CCS COP = 2.5 (assumed)

Zonal TEC heating to driver = 100W

Zonal TED COP = 2.5 (assumed)

Total power used = 560W
TE applications: heat recovery from exhausted gases

Reduced Energy Consumption by Massive Thermoelectric Waste Heat Recovery in Light Duty Trucks

HeatReCar - EU project

<table>
<thead>
<tr>
<th>Company</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siemens</td>
<td>Germany</td>
</tr>
<tr>
<td>ROM Innovation</td>
<td>France</td>
</tr>
<tr>
<td>CRF</td>
<td>Italy</td>
</tr>
<tr>
<td>Bosch</td>
<td>Germany</td>
</tr>
<tr>
<td>Termo-gen AB</td>
<td>Sweden</td>
</tr>
<tr>
<td>Fraunhofer IPM</td>
<td>Germany</td>
</tr>
<tr>
<td>Valeo</td>
<td>France</td>
</tr>
</tbody>
</table>

Slide courtesy of Fiat
TE applications: distributed energy generation

Thermoelectricity for Mobile Systems

THERMOBILE - under evaluation

<table>
<thead>
<tr>
<th>Organization</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNRS</td>
<td>France</td>
</tr>
<tr>
<td>CRF</td>
<td>Italy</td>
</tr>
<tr>
<td>SNCF</td>
<td>France</td>
</tr>
<tr>
<td>CEA</td>
<td>France</td>
</tr>
<tr>
<td>EMPA</td>
<td>Switzerland</td>
</tr>
<tr>
<td>DTU</td>
<td>Denmark</td>
</tr>
<tr>
<td>BOSCH</td>
<td>Germany</td>
</tr>
<tr>
<td>Termo-Gen AB</td>
<td>Sweden</td>
</tr>
<tr>
<td>BASF</td>
<td>Germany</td>
</tr>
</tbody>
</table>
Thank You!