Investigation of Mixed Oxide Catalysts for NO Oxidation

ACE078

Larry Pederson, Ayman M. Karim, Janos Szanyi, Donghai Mei, Ja Hun Kwak, Diana Tran, Charles H.F. Peden, George Muntean

Pacific Northwest National Lab
May 16, 2013

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Start – Oct 2011
- Finish – Sept 2014
- 36-month CRADA

Budget
- Total project funding
 - DOE: $450k ($150k/year)
 - Matched 50/50 by GM per CRADA agreement
- Funding authorized to-date: $186k

Barriers
- Reduce or optimize PGM usage as “critical materials” in emission control devices
- Development of low-temperature oxidation catalysts
- Better understanding of active sites and structure requirements in catalysts
- Design and modeling of catalyst functions and structures

Partner
- General Motors
- GM’s university partner in China (Tianjin University)
Motivation and Relevance

- Higher efficiency engines often imply lower exhaust temperature, requiring better low-temp catalysis to meet emission regulations by inexpensive and reliable NOx emission control.

- Pt commodity pricing is still high and volatile, although the increase is leveling off.

- Thrifting or replacement of Pt in DOC and LNT catalysts desired for:
 - supply-chain stability
 - cost reduction as an enabler to advanced aftertreatment and combustion technologies
 - alternative technologies for oxidation reactions.

Source: Monex Precious Metals
www.monex.com
Objectives

This CRADA project aims to develop and demonstrate a substitutive option for Pt oxidation function using mixed-metal oxide structures.

- Improve the understanding of the nature and structure of active sites for mixed metal oxide catalysts intended for NO oxidation
- Study of synthetic method and composition on resulting structure and on effectiveness of NO oxidation

- Typical LNT catalyst structure (left)
Partnership with GM - CRADA

- Based on research reported by GM (Science 327 (2010) 1624)
 - CRADA initiated for PNNL assistance leveraging surface science and catalysis capabilities
 - Analytical assessment and computational model

- Scope split, but coordinated between GM and PNNL
 - GM - Catalyst formulation, aging and testing
 - PNNL - Characterize structure and active sites, along with alternative synthesis processes and assessment of the effect on performance

Fig. 1. NO oxidation activities for LaCoO$_3$ (○), La$_{0.4}$Sr$_{0.4}$CoO$_3$ (●), LaMnO$_3$ (□), La$_{0.4}$Sr$_{0.4}$MnO$_3$ (■), and commercial DOC (▲) at a gas hourly space velocity of 30,000 hour$^{-1}$, 400 parts per million (ppm) of NO and 8% of O$_2$ in a balance of N$_2$.

Science 327 (2010) 1624
Approach

- Prepare and evaluate both fresh and lab-aged catalyst materials to optimize the formulations for DOC and LNT applications.

- Utilize catalysis expertise, state-of-the-art analytical techniques and computational analysis to investigate:
 - Surface and bulk properties of the catalyst materials with respect changes in composition;
 - Interaction between reactants and the potential active sites;
 - And help inform more advanced catalyst formulations.
Milestones and Planned 2nd Year Tasks

- Characterization of fresh and lab-aged catalysts
 - Catalyst formulation and aging by GM
 - Characterize structure and number of active sites - XRD, TPD, TPO
 - Identified mixed metal oxide catalyst compositions and forms that show high activity for NO oxidation.

- Determination of reaction mechanism
 - Demonstrated that the MnO$_x$-CeO$_2$ catalyst both decreased the required temperature for formation and increased the quantity of labile oxygen needed for NO oxidation.
 - Showed that mixed metal oxide catalysts produced using a simple incipient wetness method compared favorably to those prepared by co-precipitation.

- Computational analysis of active sites and reaction mechanism
 - Density function theory (DFT) calculations established to help investigate the interaction between reactants and potential active sites
Catalyst Synthesis

GM: synthesized by co-precipitation method
- CeO$_2$
- MnO$_x$
- Mn-CeO$_x$ (Mn/(Mn+Ce) = 0.04)
- Mn-CeO$_x$ (Mn/(Mn+Ce) = 0.12)
- Mn-CeO$_x$ (Mn/(Mn+Ce) = 0.30)

PNNL
- incipient wetness method
- Support: high surface area CeO$_2$
 (from GM S.A. = ~ 120m2/g)
- MnO$_x$ loading: 3.4, 6.9, 14.3, 30.7 wt%
As the concentration of Mn increases, the valence of Mn decreases from +2.32 to +2.

- Mn incorporated in the CeO$_2$ lattice is expected to be in Mn$^{2+}$ valence state.

- The ionic radius of Mn$^{2+}$ (0.97 Å) is the same as that of Ce$^{4+}$ (0.97 Å).
H₂ TPR Shows Strong Interaction Between Ce and Mn

- Impregnated sample shows relatively simple hydrogen consumption profile compared with co-precipitated sample.
- Significantly lower reduction temperature compared with MnOx and higher Mn⁴⁺ to Mn³⁺ reduction peak intensity.
- Results suggest that ceria helps stabilize higher oxidation state of Mn species (mostly Mn⁴⁺)
- Confirmed the accessibility of MnOx.
Mn-CeO show similar lattice spacing by TEM and XRD

Lattice parameter from TEM

<table>
<thead>
<tr>
<th>Sample</th>
<th>d(111) (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeO₂</td>
<td>3.233</td>
</tr>
<tr>
<td>MnOₓ-CeO₂ (Mn/(Mn+Ce) = 0.04)</td>
<td>3.193</td>
</tr>
<tr>
<td>MnOₓ-CeO₂ (Mn/(Mn+Ce) = 0.12)</td>
<td>3.200</td>
</tr>
<tr>
<td>MnOₓ-CeO₂ (Mn/(Mn+Ce) = 0.3)</td>
<td>3.167</td>
</tr>
</tbody>
</table>

▶ DFT, TPR, TEM and XRD results suggest that MnOₓ is mostly on the surface.

Electron diffraction
MnO₂ is more active than CeO₂.

MnOₓ/CeO₂ is more active than pure CeO₂ or MnO₂ which is consistent with the TPR (more reducible MnOₓ → more active oxygen).

Impregnated PNNL catalyst show comparable catalytic activity with co-precipitated GM catalysts.
Activity is Weakly Dependent on Mn loading

Over 6.9wt% Mn show basically same catalytic behavior which is consistent with GM results (0.3 and 0.5 show similar activity).

- The effect of loading on Mn oxidation state is being investigated (in situ XPS and XAFS).

- NO conversion to NO₂ is lower than total NO conversion, suggesting NOₓ storage which is currently being investigated.
NO adsorption CeO$_2$ at 295 K
Show Nitrite Formation

- 1. Fast nitrite formation
- 2. NO “heals” oxygen vacancies, that leads to the formation of N$_2$O
NO Temperature Programmed Desorption on CeO₂

- Weakly adsorbed NO desorbs at T<400 K.
- Part of the nitrites desorbs at ~560 K, the other part converts to nitrates during TPD.
- Nitrates decompose at ~700 K as NO+O₂.
- The amounts of NO₂⁻ and NO₃⁻ are higher on the oxidized CeO₂ than on the reduced one.
NO+O₂ reaction over CeO₂ and 14% MnOₓ/CeO₂

Less weakly adsorbed NO on MnOx/CeO₂ compared to CeO₂.

Nitrate formation and decomposition took place at lower temperature in the presence of MnOx.
NO Adsorption on CeO$_2$ Supported MnO$_2$ Cluster

- No cation was reduced by NO adsorption.
- $\text{Mn}^{3.9+} \rightarrow \text{Mn}^{3.6+}$ and $\text{Mn}^{3.6+} \rightarrow \text{Mn}^{3.0+}$
- Mn – O bond (2.456 Å) was enlarged significantly.
NO Oxidation on \((\text{MnO}_2)_2/\text{CeO}_2(111)\) Model Catalyst

- Compared to the pure CeO\(_2\)(111) and \(\beta\)-MnO\(_2\)(110) surfaces, the proposed model catalyst shows higher activity for NO oxidation in terms of enhanced NO\(_2\) desorption and easier oxygen replenish mechanism.

- The higher activity and lower desorption barrier are in agreement with the FTIR and catalytic activity results.

\[\Delta E = 2.38 \text{ eV for CeO}_2(111) \]

\[\text{Ea} = 1.50 \text{ eV for CeO}_2(111) \]
Summary and Conclusions

- Project progress
 - Catalysts prepared and characterized
 - NO oxidation reactions completed
 - The reaction mechanism was investigated by DFT and FTIR.

- CeO$_2$ helps stabilize Mn in a higher oxidation state (Mn$^{4+}$)
 - in addition, the Mn is also easier to reduce.

- NO oxidation results on impregnated catalysts and DFT calculations suggest that Mn doping in the ceria lattice is not necessary.

- MnO$_x$ significantly lowers the temperature for the conversion of adsorbed nitrites to nitrates.

- The NO oxidation mechanism on the proposed (MnO$_2$)$_2$/CeO$_2$ model catalyst structure is in agreement with the FTIR and NO oxidation results.
Future Work

Goal: Optimize mixed metal oxide catalyst compositions and active sites for NO oxidation, to enable the noble metal content of DOC and LNT catalysts to be reduced or eliminated.

- Prepare MnOx-CeO$_2$ catalysts using citrate and combustion synthesis methods.
- Continue catalytic reaction tests to understand the role of NOx storage capacity and type of NOx (NO or NO$_2$) on the NO oxidation activity.
- Detailed characterization by FTIR, \textit{in situ} XPS, high resolution TEM and \textit{in situ} XAFS
- Study the effect of MnO$_2$ cluster size on the reaction mechanism by DFT.
Technical Back-Up Slides
BET

<table>
<thead>
<tr>
<th>Sample</th>
<th>Surface area (m²/g)</th>
<th>Fresh</th>
<th>After reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeO₂</td>
<td></td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>MnOₓ</td>
<td></td>
<td>14</td>
<td>14.7</td>
</tr>
<tr>
<td>Mn/(Mn+Ce) = 0.04</td>
<td></td>
<td>75</td>
<td>71.0</td>
</tr>
<tr>
<td>Mn/(Mn+Ce) = 0.12</td>
<td></td>
<td>88</td>
<td>84.3</td>
</tr>
<tr>
<td>Mn/(Mn+Ce) = 0.3</td>
<td></td>
<td>64</td>
<td>64.4</td>
</tr>
</tbody>
</table>

- PNNL catalysts shows high surface area due to the initial high surface area CeO₂.
- Negligible surface area reduction after reaction tests for both GM and PNNL catalysts.
Insight into Reaction Mechanism
NO Oxidation on CeO$_2$(111)

\[
\text{NO(g)} + \frac{1}{2} \text{O}_2(g) \rightarrow \text{NO}_2(g)
\]

\[\Delta E = -1.16 \text{ eV}\]

- NO adsorption
 \[\Delta E = -0.82 \text{ eV}\]

- NO* + \frac{1}{2} O$_2$(g)

- O$_2$ adsorption
 \[\Delta E = +1.33 \text{ eV}\]

- NO* + O*

- NO oxidation
 \[\Delta E = -2.32 \text{ eV}\]

- NO* + 1/2 O$_2$(g)

- NO$_2$ desorption
 \[\Delta E = +0.65 \text{ eV}\]

- NO$_2^*$
Insight into Reaction Mechanism
NO Oxidation on CeO$_2$–x(111)

\[\text{NO(g)} + \frac{1}{2} \text{O}_2(g) \rightarrow \text{NO}_2(g) \]
\[\Delta E = -1.16 \text{ eV} \]

NO adsorption
\[\Delta E = -1.18 \text{ eV} \]

\[\text{NO}^* + \frac{1}{2} \text{O}_2(g) \rightarrow \text{NO}_2^* \]
\[\Delta E = -2.00 \text{ eV} \]

NO oxidation
\[\Delta E = +2.10 \text{ eV} \]

NO$_2$ desorption

Technical Progress
1. Fast nitrite formation on both samples
2. NO “heals” oxygen vacancies, that leads to the formation of N₂O
Weakly adsorbed NO desorbs at T<400 K.

Part of the nitrites desorbs at ~560 K, the other part converts to nitrates during TPD.

Nitrates decompose at ~700 K as NO+O₂.

The amounts of NO₂⁻ and NO₃⁻ are higher on the oxidized CeO₂ than on the reduced one.