HCCI and Stratified-Charge CI Engine Combustion Research

John E. Dec
Chunsheng Ji and Jeremie Dernotte
Sandia National Laboratories

May 14, 2013 – 9:30 a.m.
U.S. DOE, Office of Vehicle Technologies
Annual Merit Review and Peer Evaluation

Program Manager: Gurpreet Singh
Project ID: ACE004

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Overview

Timeline
- Project provides fundamental research to support DOE/Industry advanced engine projects.
- Project directions and continuation are evaluated annually.

Barriers
- Increase the efficiency of HCCI (LTC).
- Extend HCCI (LTC) operating range to higher loads.
- Improve the understanding of in-cylinder processes.

Budget
- Project funded by DOE/VT:
 - FY12 – $760k
 - FY13 – $740k

Partners / Collaborators
- Project Lead: Sandia ⇒ John E. Dec
- Part of Advanced Engine Combustion working group – 15 industrial partners
- General Motors – specific collaboration
- Cummins – spark-plug cylinder heads
- LLNL – support kinetic modeling – CFD modeling
- Univ. of Michigan – thermal stratification
- Univ. of Calif. Berkeley – CFD modeling
- Chevron – advanced fuels for HCCI
- LDRD – advanced biofuels project
Objectives - Relevance

Project objective: to provide the fundamental understanding (science-base) required to overcome the technical barriers to the development of practical HCCI or SCCI engines by industry.

FY13 Objectives ⇒ Increased Efficiency, High Loads, Improved Understanding

- Effects of Gasoline Ethanol Content: Complete investigation of the effects of ethanol content of gasoline on HCCI/SCCI efficiency and load.

- Improve Efficiency of HCCI/SCCI: Determine the potential of raising the compression ratio (CR) to 16:1 vs. 14:1 to increase thermal efficiency (T-E) for both premixed fueling and with partial fuel stratification (PFS).

- Thermal Stratification (TS) Imaging: 1) Investigate the effect of piston-top temperatures on TS & cold-pocket distribution. 2) Explore the potential for obtaining thermal boundary-layer (BL) measurements from T-map images.

- Facility Upgrade for spark-assisted HCCI & higher GDI injection pressures.

- Support Modeling of chemical-kinetics at LLNL and TS at the University of Michigan (UM) and General Motors.
Approach

- Use a combination of metal- and optical-engine experiments and modeling to build a comprehensive understanding of HCCI/SCCI processes.

- Metal engine ⇒ high-quality performance data. Conduct well-characterized experiments to isolate specific aspects of HCCI/SCCI combustion.
 - **Fuel Effects:** Systematically investigate performance for premixed and partially stratified operation with E0, E10, E20, E100, and a high-AKI E0 fuel.
 - **Improved efficiency:** Install CR = 16 piston and seek the highest-efficiencies and highest-loads for a range of op. conditions. Compare with previous CR = 14 data.

- Optical engine ⇒ detailed investigations of in-cylinder processes.
 - **Thermal stratification:** Install instrumented aluminum piston top and variable air-jet cooling. Apply PLIF-based thermal imaging to bulk-gas & boundary layer (BL).

- Facility upgrade: Work with Cummins to modify heads for spark plugs, and with GM to obtain a high-pressure (300 bar) GDI injector and driver.

- Computational Modeling: Collaborate with LLNL, UM & GM, and UC-B. ⇒ Support by identifying key trends, providing data, discussion & feedback.

- Combination of techniques provides a more complete understanding.

- Transfer results to industry: 1) physical understanding, 2) improved models.
Matching all-metal & optical HCCI research engines.

- Single-cylinder conversion from Cummins B-series diesel.

- Bore x Stroke = 102 x 120 mm
- 0.98 liters, CR=14 & 16

Unless noted: Ringing ≤ 5 MW/m² & spd = 1200 rpm
NOₓ & soot emiss. > 10x below US-2010
Accomplishments

- Completed evaluation of performance affects of increasing ethanol content of gasoline, from E0 \Rightarrow E10 \Rightarrow E20. (Base fuel, E0 \Rightarrow AKI = 87, regular gas).
 - Evaluated effects on stability, efficiency, high-load limit, and ability to apply PFS.
- Expanded fuels study to include: 1) E100 (pure ethanol), and 2) effects of changing the base fuel composition \Rightarrow high AKI = 93 distillate fuel (CF-E0).
 - Evaluated performance and compared with ethanol addition.
- Determined the effect of increasing the CR from 14 to 16 on performance for both fully premixed and partially fuel stratified (PFS) operation.
 - Study is about 70% complete \Rightarrow on track to complete this FY.
- Optical Engine: designed and installed aluminum piston with variable air-jet cooling, & evaluated vignetting/camera-position effects for BL measurement.
 - On track to obtain TS and BL data as planned this FY.
- With Cummins, designed and fabricated spark-plug cylinder heads, and with GM, acquired ignition systems & high-pressure GDI injectors.
- Conducted a comparative study of Combustion Noise and Ringing Intensity.
- Supported chemical-kinetic & CFD modeling at LLNL, and TS modeling at U. Michigan & GM. Expanded task to include CFD at UC-Berkeley.
Effects of Gasoline Reactivity and Ethanol Content on Boosted HCCI / SCCI Combustion

- Efforts in HCCI/SCCI are moving toward a greater emphasis on high-load capabilities ⇒ potential for a full-time HCCI/SCCI-LTC engine.

- Important to understand how fuel reactivity can improve boosted HCCI performance: 1) stability, 2) efficiency, and 3) high-load capability.

1. Vary the ethanol content of gasoline: E0, E10, E20, & E100.
 - E10 and E20 ⇒ add 10 & 20% ethanol to base fuel (E0) ⇒ antiknock index, AKI = 87. Eliminates effect of changes in base-fuel composition, but increases AKI.

2. Increase the AKI of base fuel with no ethanol.
 - Certification fuel (CF-E0) ⇒ a high-octane distillate fuel, AKI = 93.

- AKI of E0 base-fuel increases progressively with ethanol content.

<table>
<thead>
<tr>
<th></th>
<th>RON</th>
<th>MON</th>
<th>AKI SAE 2012-01-1274</th>
<th>AKI Ethanol – linear blending</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0</td>
<td>91.0</td>
<td>82.7</td>
<td>86.9</td>
<td>N/A</td>
</tr>
<tr>
<td>E10</td>
<td>95</td>
<td>86</td>
<td>90.5</td>
<td>88.2</td>
</tr>
<tr>
<td>E20</td>
<td>98</td>
<td>87.5</td>
<td>92.8</td>
<td>89.4</td>
</tr>
<tr>
<td>E100</td>
<td>109</td>
<td>90</td>
<td>99.5</td>
<td>N/A</td>
</tr>
<tr>
<td>CF-E0</td>
<td>96.6</td>
<td>88.7</td>
<td>92.7</td>
<td>N/A</td>
</tr>
</tbody>
</table>

CR = 14 for Fuels Study

- CF-E0: AKI nearly the same as E20, RON is between E10 and E20.
HCCI Autoignition Reactivity – Fully Premixed

- Naturally Aspirated:
 - E0, E20 & E100 all autoignite with nearly identical T_{in} and T_{BDC}.
 - CF-E0 requires $\sim 8^\circ C$ hotter T_{in}.
- The autoignition reactivity of all fuels increases with boost.
 - Compensate with reduced T_{in} & EGR.
 - Select $T_{in} = 60^\circ C$ as min. for premixed.
- $P_{in} = 2.4$ bar, typical boosted behavior

 - Intake O$_2$ & CSP show amt. of EGR.
 - Intake-O$_2$: E0 < E10 < E20 < E100
 - Reactivity enhancement with boost is inversely correlated w/ ethanol content.
 - CF-E0 falls between E0 and E10.
 \[\Rightarrow \] Despite AKI \approx AKI of E20.

- Ethanol content \Rightarrow no effect nat. aspir.
 \Rightarrow Strong effect on reactivity for boosted
- CF-E0 less reactive than E0, N.A. & boost
- ON not a good indicator of HCCI reactivity
Stability – Effect of Fuel Type and P_{in} on ITHR

- Key to high-loads is ability to retard CA50 with good stability to ctrl. PRR_{max}.
- ITHR keeps $dT/d\theta$ rising despite expansion, giving good stability.
- $P_{in} = 1$ bar: all fuels show low ITHR.
 - Retard limited to $CA50 \approx 373$ CA.
- Boosted, $P_{in} = 2.4$ bar (typical):
 - E0 & CF-E0 show large incr. in ITHR \Rightarrow good stability to $CA50 \approx 379$ CA.
 - E100 no change in ITHR, poor stability.
 - E10 similar ITHR to E0.
 - E20 between E0 and E100.
- Amount of ITHR also correlates with ϕ-sensitivity & ability to apply PFS.

- E0, E10 & CF-E0: expect good stability for high-load boosted oper., premixed & PFS.
- E100: poor stability & E20: in between
Stability – Effect of Fuel Type and P_{in} on ITHR

- Key to high-loads is ability to retard CA50 with good stability to ctrl. PRR_{max}
- ITHR keeps $dT/d\theta$ rising despite expansion, giving good stability.
- $P_{in} = 1$ bar: all fuels show low ITHR.
 - Retard limited to $CA50 \approx 373$ CA.
- Boosted, $P_{in} = 2.4$ bar (typical):
 - E0 & CF-E0 show large incr. in ITHR \(\Rightarrow\) good stability to $CA50 \approx 379$ CA.
 - E100 no change in ITHR, poor stability.
 - E10 similar ITHR to E0.
 - E20 between E0 and E100.
- Amount of ITHR also correlates with ϕ-sensitivity & ability to apply PFS.
 - E0, E10 & CF-E0: expect good stability for high-load boosted oper., premixed & PFS.
 - E100: poor stability & E20: in between
Efficiency – Premixed Fueling, $P_{in} = 2.4$ bar

- T-E falls with load due to CA50 retard.
- Indicated Thermal Eff. (T-E) and max. load very similar for E0, E10 & E20.
 - Changes in EGR & C-E tend to cancel.
 - No low loads for E20 – need higher T_{in}.
 - E20 max. load & CA50 retard similar despite less ITHR.
- Ethanol requires $T_{in} = 95 - 87$ C.
 - Lower T-E \Rightarrow more heat loss & lower γ.
 - CA50 v. load similar, but max. load is less \Rightarrow low ITHR limits CA50 retard.
 - Much less stable for loads acquired.
- CF-E0 similar load range, higher T-E.
 - Higher sensitivity to TS, slows HR.
 - Allows CA50 to be more advanced.
- For premixed fueling, T_{in} & CA50 are the main factors affecting T-E.
 \Rightarrow CF-E0 gives a little better T-E.
Gasoline reactivity increases w/ boost ⇒ use EGR to control CA50.

E0: O₂ limited for $P_{in} \geq 2.6$ bar ⇒ Load limit = 16.3 bar IMEP₉

Blending with ethanol significantly reduces EGR requirement with boost.
- More air in charge ⇒ higher fueling.

E10: O₂ limited for $P_{in} \geq 2.8$ bar ⇒ Load limit = 18.1 bar IMEP₉

E20: O₂ limited for $P_{in} \geq 3.6$ bar ⇒ Load limit = 20.0 bar IMEP₉

CF-E0: O₂ limited for $P_{in} \geq 2.7$ bar ⇒ Load limit = 17.7 bar IMEP₉.

Higher T-E for CF-E0 mainly due to less required CA50 retard for Ring ≤ 5.

Ringing ≤ 5, ultra-low NOₓ & soot.

High-loads limited by $P_{max} < 150$ bar

![Graph showing Intake Pressure vs. Maximum IMEP]![Graph showing Intake Pressure vs. Indicated Thermal Eff. and Exhaust O₂]
Fueling Strategies – PM, Std. PFS & Early-DI
Results for E10 & CF-E0 at P_{in} = 2.4 bar

- With boost, fuel autoignition becomes ϕ-sensitive, so partial fuel strat. (PFS) can reduce HRR.
 - Allows higher loads & more adv. CA50.
 - Std. PFS \Rightarrow Premix \sim90% + late-DI
 - Early-DI \Rightarrow 100% at 60° CA, & lower T_{in}.
 > PLIF images show not fully mixed.

- **E10**: Std. PFS & Early-DI both increase T-E significantly for the same load.
 - Adv. CA50, & early-DI \Rightarrow lower T_{in} & T_{peak}.
 - Also increase max. load compared to PM
 - E0: similar improvements (not shown).

- **CF-E0**: Like E10, Early-DI increases T-E and max. load compared to PM.
 - T_{in} = 30°C, peak T-E of E-DI < PM & E10.
 - T_{in} = 40°C, peak T-E of E-DI > PM & E10
 > Maximum T-E = 48.4%, best yet.

- Both fuels, Early-DI PFS significantly improves T-E & increases max. load.
Fueling Strategies – PM & Early-DI

Results for E10, E20, & CF-E0 at P_{in} = 2.8 bar

E20: requires higher P_{in} for signif. φ-sensitivity.
- PM: load sweep similar to P_{in} = 2.4 bar.
- Std. PFS: very unstable ⇒ took only one point ⇒ no improvement.
 - Likely due to low φ-sens. with low ITHR.
- Early-DI: same max. load with higher T-E ⇒ due to advanced CA50.
 - Load range limited and lower peak T-E.

E10: PM - very similar to E20.
- Early-DI: Higher T-E than E20 ⇒ adv. CA50.

CF-E0: PM - slightly higher T-E ⇒ adv. CA50.
- Early-DI:
 - T_{in} = 30°C: T-E > PM, but < E10 early-DI
 - T_{in} = 40°C: higher T-E at low loads
 > Max. T-E = 48.4%, matches P_{in} = 2.4 bar.
 - Good stability to much higher load than PM.

- E20: std.-PFS does not work well, & Early-DI has limited load range ⇒ low ITHR
- Early-DI: increases T-E all fuels, and for CF-E0, gives a large incr. in max. load.
Increase the CR from 14:1 to 16:1.
- Investigate potential for increasing T-E.
- Evaluate effects on load range \(\Rightarrow \) maximum load as a function of \(P_{\text{in}} \).
- Premixed and Early-DI PFS fueling.

- Naturally Aspirated: CR 16 has higher T-E.
 - Larger expansion ratio.
 - Lower \(T_{\text{in}}, T_{\text{peak}} \) \(\Rightarrow \) less heat loss, higher \(\gamma \).
 - C-E lower \(\Rightarrow \) incr. HC (from crevice?)
 - Higher max. load due to lower \(T_{\text{in}} \).

- Boost up to 1.8 bar: T-E higher for CR 16.
 - \(T_{\text{in}} \) reduced to 60°C, but still zero EGR.

- \(P_{\text{in}} = 1.8 - 2.4 \) bar: efficiency advantage for CR 16 diminishes, despite better C-E.
 - \(T_{\text{in}} = 60^\circ\text{C} \) for both CRs, but more EGR required for CR =16.

- PreMixed: CR = 16 gives higher T-E, but advantage less w/ boost > 1.8 bar.
Increase CR from 14:1 to 16:1 – Early-DI

- Early-DI gives higher T-E than PM.
- $P_{in} = 2.4$ bar, $T_{in} = 40^\circ$C: CR = 16 gives ⇒
 - Higher T-Es at low loads, IMEP$_g$ < 12 bar
 - About the same T-E for IMEP$_g$ > 12 bar.
 - Load range is similar.
 - Max. T-E = 49.1% vs. 48.4 for CR = 14.
- $P_{in} = 2.4$ bar, $T_{in} = 30^\circ$C: increases T-E over the load range, but not incr. max. T-E.
 - More advanced CA50 for same IMEP$_g$.
 - Lower T_{in} & T_{peak} ⇒ less heat loss and higher γ.
 - Higher maximum load.
- CR=16 gives higher T-E for all P_{in} tested.
 - Max. T-E = 49.2% at $P_{in} = 2.2$ & 2.6 bar, vs. 48.4% for CR=14.
- Combustion efficiency is consistently a little higher with CR = 16.

- Early-DI: CR = 16 consistently gives higher T-E, max. = 49.2 vs. 48.4%.
High-Load Limit – Early DI, CR = 14 & 16

- Early-DI fueling ⇒ higher loads than PreMixed for same boost.
 - Gives benefits of PFS for reducing HRR & PRR\textsubscript{max}, due to incomplete mixing.
 - Allows lower \(T_{in} = 30 \) or 40\(^\circ\)C ⇒ less EGR required (> \(O_2 \)), more charge mass.

- CF-E0, Early-DI ⇒ IMEP\(_g\) = 19.4 bar @ \(P_{in} = 3.0 \) bar v. 3.45 bar for E20.
- CR = 16, PreMixed ⇒ Little effect on max. load up to \(P_{in} = 2.4 \) bar.
- CR = 16, Early-DI ⇒ Gives highest load at \(P_{in} = 2.4 \) bar, IMEP\(_g\) = 16.0 bar.
Objectives: 1) Investigate effect of $T_{\text{piston-top}}$ on bulk-gas TS & cold-pocket location.
2) Potential for thermal BL measurements.
- T-map, PLIF imaging in optical engine.
- Installed aluminum top on ext’d. piston.
 - Instrumented with thermocouples.
 - Variable air-jet cooling from bottom side.
- Imaging BL at piston top is challenging because of piston motion and vignetting.
- Developed vignetting correction technique and selected optimal position.

Schematic showing why vignetting occurs for side-view imaging near TDC.

PLIF Intensity Profiles @ TDC
Spark-Plug Head
- Worked with Cummins on design ⇒ Cummins provided heads & machining.
- Machining and installation of spark-plug passage tube are complete.
 - Keep centrally mounted GDI injector.
- Pressure transducer relocated.
- New port design gives low swirl without anti-swirl plate used in current head.

Spark-Ignition System
- GM has provided ignition systems.
- Obtained spark plugs, 12 mm threads & 14 mm flats, with dual iridium tips.

High-Pressure GDI Injectors
- Discussed injector requirements and performance characteristics with GM.
- GM will supply new-generation Bosch 300 bar GDI injectors and a driver.
- New higher-pressure fuel-supply system designed and parts acquired.
Adapted Matlab® code for combustion noise level (CNL) from UW (SAE 2013-01-1659) to read & analyze our cyl.-pressure data.

Performed analysis for several datasets.

1st example shows fueling sweeps for PM, std-PFS, & Early-DI fueling, with E10.
 - Hold Ringing Intensity ≈ 5 MW/m² ⇒ most adv. CA50 w/o knock, highest T-E.
 - CNL and Ringing have very similar trends.

Ringing of 5 ≈ CNL of 90 – 91 dB.

CA50 sweeps show that CNL is reduced by retarding CA50 to reduce Ringing.
 - Only a small reduction in T-E.

Note that CNL is approx. 3 dB higher for $P_{in} = 2.0$ & 2.4 bar vs. $P_{in} = 1.0$ bar.

Since Ringing > 5 is good indicator of knock, this discrepancy indicates that CNL is likely not a precise indicator of knock.
Collaborations

- Project is conducted in close cooperation with U.S. Industry through the Advanced Engine Combustion (AEC) / HCCI Working Group, under a memorandum of understanding (MOU).
 - Ten OEMs, Five energy companies, Four national labs, & Several universities.

- **LLNL**: 1) Support the development of a chemical-kinetic mechanism for gasoline/ethanol blends, Pitz *et al.*, and 2) CFD modeling, Flowers, *et al.*

- **General Motors**: Frequent internet meetings ⇒ in-depth discussions.
 - Provide data to support GM efforts on boosted HCCI & in modeling TS (with UM).

- **Cummins, Inc.**: Design and fabrication of spark-plug cylinder heads.

- **U. of Michigan**: Collaborate on modeling and analysis of TS (with GM).

- **U. of California - Berkeley**: Support CFD modeling of PFS-HCCI.

- **Chevron**: Funds-In project on advanced petroleum-based fuels for HCCI.

- **SNL-LDRD**: Funds-In project on biofuels produced by fungi ⇒ collab. with researchers in basic chemistry (C. Taatjes *et al.*) & Biofuels.
Future Work

Increase Efficiency and Loads of Boosted HCCI/SCCI

- Complete evaluation of performance with CR = 16 over a wider range of operating conditions. ⇒ Also, evaluate potential of a Miller-cycle cam.
- Conduct a comprehensive study of Early-DI-PFS to determine the extent to which its substantial benefits for T-E and load range can be applied.
 - Determine effects of operating cond. & fuel-injection parameters (P_{inj} & DI timing).
 - Expand study to include multiple injections for more-effective fuel stratification.
- Image fuel distributions in optical engine to guide fuel-injection strategies.
- Install spark-plug cylinder heads: 1) determine effects of new intake-port geometry, and 2) initiate studies of spark-assisted CI combustion.

Thermal Stratification

- Complete investigation of the effects of piston-top temperature on amount of TS and cold-pocket distribution. ⇒ Also, investigate potential over-mixing.
- Determine the potential for obtaining thermal BL profiles at the piston-top.

Support of HCCI/SCCI Modeling

- Continue to provide data, analysis, and discussion to support modeling at LLNL, U. of Michigan, and U. of California-Berkeley.
Summary

- Conducted an extensive study of the effects of “gasoline-like” fuel composition, including: 1) blending ethanol up to 20%, 2) increasing the AKI of the base fuel from 87 to 93 without ethanol, and 3) pure Ethanol.

- Early-DI-PFS fueling provides substantial benefits when ethanol content \(\leq 10\% \), and for the high-AKI base fuel (CF-E0).
 - Gives higher T-E and higher loads for a given \(P_{in} \). ⇒ Allowed \(\text{IMEP}_g = 19.4 \text{ bar} \) at \(P_{in} = 3.0 \text{ bar} \) vs. \(\text{IMEP}_g = 16.6 \text{ bar} \) for PreMixed. ⇒ Ease turbo design.

- Explored the potential benefits of increasing the CR from 14:1 to 16:1.
 - Achieved a peak T-E of 49.2% for CR 16, compared to 48.4% for CR 14.
 - No significant penalty in maximum load for \(P_{in} \) up to 2.4 bar (using CF-E0).

- Thermal-stratification and boundary-layer (BL) measurements:
 - Installed aluminum piston-top with variable air-jet cooling.
 - Worked out vignetting correction for BL measurements.

- Facility upgrade: 1) worked with Cummins to design and build a “spark-plug” cyl. head, and 2) worked with GM to obtain high-press. GDI injectors.

- Combustion Noise Level (CNL) and Ringing Intensity are generally well correlated for HCCI/SCCI combustion, but the results indicate that CNL may not be a good indicator of knock over the operating range.
Technical Backup Slides
Conducted an extensive study of the effects of “gasoline-like” fuel composition, including: 1) blending ethanol up to 20%, 2) increasing the AKI of the base fuel from 87 to 93 without ethanol, and 3) pure Ethanol.

For Premixed fueling:
- Ethanol content has almost no effect on autoignition for naturally aspirated operation, but a large effect for boosted operation.
- For boosted operation with \(P_{in} \geq 2.4 \) bar, blending with ethanol up to 20% has little effect on the T-E, but CF-E0 gives a slightly higher T-E.
- Blending ethanol up to 20% is beneficial for extending the high-load limit.
 \[\Rightarrow \text{Increased maximum load from } IMEP_g = 16.3 \text{ bar at } P_{in} = 3.25 \text{ bar for E0 to } IMEP_g = 20.0 \text{ bar at } P_{in} = 3.6 \text{ bar for E20.} \]
- For the high-AKI E0 fuel (CF-E0), performance was generally similar to E10.

Early-DI-PFS fueling provides substantial benefits when ethanol content \(\leq 10\% \), and for the high-AKI base fuel (CF-E0).
- Gives higher T-E and higher loads for a given \(P_{in} \) compared to premixed.
 \[\Rightarrow \text{Allowed } IMEP_g = 19.4 \text{ bar at } P_{in} = 3.0 \text{ bar vs. } IMEP_g = 16.6 \text{ bar for premixed.} \]
 \[\Rightarrow \text{Beneficial for turbocharger design.} \]
- Early-DI PFS did not work well with E20 due to instabilities.
 Detailed Summary – 2

- Explored the potential benefits of increasing the CR from 14:1 to 16:1.
 - Typically increased T-E by 0.5 – 0.8 thermal-efficiency percentage units.
 - Achieved a **peak T-E of 49.2% for CR 16**, compared to 48.4% for CR 14.
 - No significant penalty in maximum load for P_{in} up to 2.4 bar (using CF-E0).

- Thermal-stratification and boundary-layer (BL) measurements:
 - Installed aluminum piston-top with variable air-jet cooling.
 - Worked out vignetting correction for BL measurements.

- Facility upgrade: 1) worked with Cummins to design and build a “spark-plug” cyl. head, and 2) worked with GM to obtain high-press. GDI injectors.

- Combustion Noise Level (CNL) and Ringing Intensity are generally well correlated for HCCI/SCCI combustion, but the results indicate that CNL may not be a good indicator of knock over the operating range.