An Extensible Sensing and Control Platform for Building Energy Management

DOE Award DE-EE0006353

Anthony Rowe
Assistant Research Professor
ECE Department
Carnegie Mellon University

Mario Bergés
Assistant Professor
CEE Department
Carnegie Mellon University

Chris Martin
Senior Manager
Bosch Research and Technology Center
Pittsburgh
Partners

BOSCH

Electrical & Computer Engineering

Civil & Environmental Engineering

OSRAM

MAYA
The Team

Anthony Rowe
ECE - CMU

Chris Martin
Bosch

Mario Bergés
CEE - CMU

Patrick Lazik
ECE

Max Buevich
ECE

Emre Kara
CEE

Jingkun Gao
CEE
Sensor Andrew

- Infrastructure to help connect the *virtual* and *physical world*
- Access, store, control, describe and search sensor data while maintaining security and privacy
- Internet-scale performance and Extensibility

What makes this different from existing solutions?
Some Differences

• Open source, community driven and hacker-oriented (SDK)
• Reuses existing solutions for:
 – Access control / Privacy
 – Internet-scalability
• Separates measurements from meta-data.
• Minimalistic meta-data schemas
Sensor Andrew Highlights

• **Networking**
 – Publish-Subscribe Architecture
 – Device-Level Access Control

• **Storage**
 – Multi-Resolution Time Series Database
 – Cloud-to-Edge Hand-off
 • High-resolution data stored at routers
 • Aggregates intelligently pushed to server side

• **Device Interfaces**
 – FireFly Wireless Sensing Platform, BACnet, Android@Home, NEST thermostat, Web Services, ModBus, PUP, Zigbee, Zwave
Respawn Distributed Datastore
Respawn Approach

- Key techniques:
 - multi-resolution tiling / lossless compression
 - cloud-to-edge partitioning
Request Handling

- Dispatcher redirects client requests to edge/cloud.
- REQUEST: (device, channel, level, offset)
 - “HTTP/1.1 GET /tile/sensor.temperature/10.2609.json”
- RESPONSE: JSON object
Sensor Andrew Applied to Building Automation Systems (BAS)

- BAS Composer
- BAS Executive
- BAS Viewer

Sensors Over XMPP (SOX)

- BAS Adapter
- BAS Adapter
- BAS Adapter

FF Plug FF Environmental
CMEL

Pneumatic Matrix
HVAC

Hue InScope
Lighting
Scaife Hall Deployment

40,000 sq ft, 5 story, 140 room, 8 hallway, academic building built in 1962 with classrooms, auditorium, offices and labs.
Instrumentation Roadmap

EnFuse Panel Meters
Electricity usage
11 x 48 = 528 feeds

AutoMatrix PUP Controller
HVAC
30 x 6 (inter-building) x 24 = 4320 feeds

Thermostat
802.15.4 Pneumatic thermostat with branch pressure monitoring
70 feeds

Fan Control Units
802.15.4 units for heat exchangers in each room
Control and power metering
170 feeds

OSRAM Lighting Controller
277 VAC lighting control
15 x 2 = 30 feeds

FireFly Environmental
Light, temp, humidity, sound, motion, vibration, pressure
120 feeds

Chilled Water and Steam
Temperature and flow-rate
2 x 2 = 4 feeds

Localization
ALPs + VLC Localization
Feed per person
Conclusions

• Existing Buildings
 – Rapid / low-cost deployment

• Leverage Open Standards
 – XMPP, IFC, BIM Surfer

• Scalable Backend
 – Storage, Communication, Analytics