

Manufacturing Cost Analysis of Fuel Cells for Material Handling Applications

Vince Contini, Kathya Mahadevan, Fritz Eubanks, Jennifer Smith, Gabe Stout and Mike Jansen Battelle

April 16, 2013

Presentation Outline

- Background
- Approach
- System Design
- Fuel Cell Stack Design
- Stack, BOP and System Cost Models
- System Cost Summary
- Results Summary

Background

5-year program to provide feedback to DOE on evaluating fuel cell systems for stationary and emerging markets by developing independent models and cost estimates

- Applications Primary (including CHP) power, backup power, APU, and material handling
- Fuel Cell Types 80°C PEM, 180°C PEM, SOFC technologies
- Annual Production Volumes 100, 1K, 10K, and 50K (only for primary production systems)
- Size 1, 5, 10, 25, 100, 250 kW

In fiscal year 2012

 10 and 25 kW PEM Fuel Cells for Material Handling Equipment (MHE) applications

Manufacturing Cost Analysis Methodology

PEM Fuel Cell System Design for MHE Applications

Material Handling PEM Fuel Cell System Specification

Parameter	10 kW System	25 kW System		
Power Density (W/cm ²)	0.65			
Current Density (A/cm ²)	1.	.0		
Cell Voltage (VDC)	0.65			
Active Area Per Cell (cm ²)	200	400		
Net Power (kW)	10	25		
Gross Power (kW)	11	27.5		
Number of Cells (#)	85	106		
Full Load Stack Voltage (VDC)	55 69			
Membrane Base Material	PFSA, 0.2mm thick, PTFE reinforced			
Catalyst Loading	0.6 mg Pt/cm ² (total)			
	Cathode is 2:1 relative to Anode			
Catalyst Application	Catalyst ink prepared, sprayed deposition, heat dried, decal transfer			
Gas diffusion layer (GDL) Base Material	Carbon paper	0.2 mm thick		
GDL Construction	Carbon paper dip-coated with	PTFE for water management		
Membrane electrode assembly (MEA) Construction	Hot press and die cut			
Seals	1 mm silicone, die cut			
Stack Assembly	Hand assembled, tie rods			
Bipolar Plates	Graphite composite, compression molded			
End Plates	•	ist aluminum		

Battelle

The Business of Innovation

PEM Fuel Cell Stack Manufacturing Process Overview

7

Methodology for Calculating Manufacturing Costs

- Use the Boothroyd-Dewhurst estimating software
- Employed standard process models whenever they exist
- Developed custom models as needed

👔 DFM Concurrent Costing 2.3 [C:\Users\EUBANKSC\Documents\Dfma\Fuel Cell 2012\MHE\10 kW St 🛄 🖳	x
<u>File Edit Analysis View Reports Graphs Tools Help</u>	
D 🗳 🗔 🎭 🦘 🗶 🖍 📣 🖉 💊 📎 144 (B) 🔊 🤋	
Platinum part produced by Catalyst Decal Transfer Part width, mm 175.000 Catalyst Decal Transfer Catalyst Ink preparation Spray coat anode to membrane Spray coat achode to substrate Decal transfer Data tabyst loading, mg/cm*2 0.6 Original Catalyst loading, mg/cm*2 0.6 Cathode Anode loading ratio 2 Cost results, \$ Previous Current 0.07 Machine rate, \$/hr 2.5 Labor rate, \$/hr 2.5 Labor rate, \$/hr 4.5	
rejects 0.60 0.60 piece part 27.99 27.97 tooling 0.00 0.00 total 27.99 27.97 Tooling investment 0 0 Coated length, m 3,718.75 Picture Scale to fit ronsparent Scale to fit transparent These results are not based on a standard cost model from Boothroyd Dewhurst, Inc. They are based on a user process cost model added by Battelle. Picture	

- **Custom Model Development Process**
 - Develop model approach and process flow
 - Perform preliminary model analysis
 - Inputs and calculations required to produce cost outputs
 - Independent verification of viability and accuracy
 - Implement model in Boothroyd
 Dewhurst DFMA tool
 - Develop model code
 - Validate model results against preliminary cost analysis results

Battelle The Business of Innovation

Major Stack Material and Process Assumptions for MHE Applications

Material	Cost (\$)	Measure	Process Assumptions	Value
Platinum	1,390	troy oz	Scrap rate	Varies
Nafion NR50	2,750 – 1,100	kg	Inspection steps included in processing	None
Carbon powder	18		Labor cost	\$45/hr
		kg	Machine cost*	\$25/hr
Membrane	250 - 180	m ²	Energy cost	\$0.07/kW-h
GDL	95 - 60	m ²	Overall plant efficiency	85%
BMC 940 for Bipolar Plate	2.43	kg	Operators per line	1
A-356 Cast Aluminum	2.54	kg	*note that energy cost of high power machines is inclu-	ded in processing cost

- Catalyst ink composition
 - 32% platinum
 - 48% carbon powder
 - 20% Nafion

- Catalyst loading
 - Anode: 0.2 mg/cm²
 - Cathode: 0.4 mg/cm²
- Scrap rates
 - Bipolar plates: 2.5%
 - Catalyst application: 2.5%

Battelle

The Business of Innovation

- MEA hot pressing: 3.0%
- Gasket die cutting: 0.5%
- End plates: 0.5%

Capital Cost Assumptions

Capital Cost	Unit Cost	Units	Total Cost (2010\$)	Assumption/Reference
Factory Total Construction Cost	250	\$/sq.ft	855,750 to 5,545,000	 Includes Electrical Costs (\$50/sq.ft.). Total plant area based on line footprint plus 1.5x line space for working space, offices, shipping, etc. Varies with anticipated annual production volumes of both 10 kW and 25 kW stacks.
Production Line Equipment Cost	Varies by component		1,492,270 to 12,327,330	 Varies with anticipated annual production volumes of both 10 kW and 25 kW stacks.
Forklifts	25,000	\$/lift	50,000	 Assumes 2 forklifts with extra battery and charger.
Cranes	66,000	\$/crane	198,000	• 5 ton crane, 20' wide per line
Real Estate	125,000	\$/acre	125,000	 Assumes 1 acre of vacant land, zoned industrial Columbus, OH
Contingency	10% CC		272,102 to 1,871,833	Construction estimation assumption
Total			2,993,122 to 20,590,163	 Varies with anticipated annual production volumes of both 10 kW and 25 kW stacks

10 kW MHE PEM Fuel Cell Stack Manufacturing Cost Summary

Stack Component	100 Units (\$)	1000 Units (\$)	10,000 Units (\$)
Bipolar plates	726	725	724
MEA	3,333	2,964	2,415
Cooling gasket	139	139	139
Tie rods and hardware	40	40	40
End plates	54	54	54
Stack assembly	65	52	50

Note: All costs include manufacturing scrap

10 kW MHE PEM Fuel Cell BoP Manufacturing Cost Summary

BOP Component	100 Units (\$)	1,000 Units (\$)	10,000 Units (\$)
Battery	8,500	6,000	5,000
Hydrogen Tank	3,494	3,373	3,373
DC/DC Converter (Power)	3,450	2,900	1,996
H2 Recirc Blower & Controller	1,595	469	431
Humidifier	1,595	1,276	1,085
Hydrogen Regulator	1,400	1,200	1,000
Radiator	625	500	425
Blower (Cathode Air)	629	503	440
Other Components	4,184	3,458	3,006
Additional Work Estimate	1,800	1,400	1,100
System Assembly	58	46	45

BOP of (10,000) 10kW Units Note: Battery , DC/DC Converter ,H2 Storage & Fittings Not Included

(100) 10kW Units Battery DC/DC Converter (Power) 6% 6% Hydrogen Tank 13% Humidifier H2 Recirc Blower & Controller 13% 7% Hydrogen Regulator Blower (Cathode Air) 15% Radiator Additional Work Estimate Other

10 kW MHE PEM Fuel Cell System Cost Summary

Description	100 Units	1,000 Units	10,000 Units
Total stack manufacturing cost, with scrap	\$4,357	\$3,974	\$3,422
Stack manufacturing capital cost	\$2,825	\$283	\$74
BOP	\$27,272	\$21,079	\$17,856
System assembly, test, and conditioning	\$279	\$267	\$266
Total system cost, pre-markup	\$34,733	\$25,603	\$21,618
System cost per gross KW, pre- markup	\$3,158	\$2,328	\$1,965
Sales markup	50.0%	50.0%	50.0%
Total system cost, with markup	\$52,100	\$38,405	\$32,427
System cost per gross KW, with markup	\$4,736	\$3,491	\$2,948

Battelle

nnovation

Comparison to Automotive Studies

2010 DTI Automotive Update – Key Characteristics				
Active cells per stack	369	cells		
Cell voltage at max power	0.676	V/cell		
Membrane power density at max power	0.833	W/cm ²		
Active area per cell	285.84	cm ²		
Total area per cell	357.3	cm ²		
Ratio of active area to total area	0.80			
Catalyst loading	0.15	mg/cm ²		
Gross power per stack	87.91	kW		
Net power per stack	80	kW		

Battelle MHE – Key Characteristics				
Active cells per stack	66	cells		
Cell voltage at max power	0.65	V/cell		
Membrane power density at max power	0.65	W/cm ²		
Active area per cell	200	cm ²		
Total area per cell	409.5	cm ²		
Ratio of active area to total area	0.49			
Catalyst loading	0.6	mg/cm ²		
Gross power per stack	11	kW		
Net power per stack	10	kW		

 The lowest automotive manufacturing volume in the 2010 DTI report is 1,000 systems which requires the manufacture of 369,000 cells. This is equivalent to Battelle MHE system annual production volumes of: (369 / 66) × 1,000 = 5,591 systems

Material Cost/Assumptions Adjusted for Comparison Purposes				
Material/Assumption Cost				
Platinum	\$1,100	/tr.oz.		
Platinum loading	0.15	mg/cm ²		
Nafion	\$2,000	/kg		
Membrane	\$224.45	/m ²		
GDL	\$71.83	/m ²		

	Battelle MHE	DTI Automotive
Stack cost per kW _{gross}	\$158	\$145
Stack cost per kW _{net}	\$174	\$159

Battelle

Sensitivity Analysis of 10 kW MHE PEMFC Stack

Sensitivity Analysis: 10 kW Stack Cost 10,000 Production Volume

X-axis is cost of fuel cell stack. Numbers in brackets are the values of the cost drivers.

MHE PEM Fuel Cell Balance of Plant Cost Comparison

- 3 Dominant Cost Drivers
 - 1. Energy Storage
 - 2. H2 Fuel Storage

3. Electronics & Controls

MHE PEMFC System BOP Cost Drivers

1. Energy Storage

3. Electronics & Controls

2. H2 Fuel Storage

Avenues for BOP Cost Reductions:

- Alternative hydrogen storage (i.e. All steel tank)
- Eliminate DC/DC converter
- Battery improvements
- Cathode humidification redesign or complete elimination

Opportunity for Cost Reduction – Use of All Steel Tank for H2 Storage

Component	Annual Production Rate			
Description	(1)	(100)	(1,000)	(10,000)
Composite H ₂ Tank	\$4,000	\$3,494	\$3,373	\$3,373
All-Steel H ₂ Tank	\$846	\$804	\$754	\$731
Savings	\$3,154	\$2,690	\$2,619	\$2,642

MHE System Cost Comparison

- Largest System Expense = Balance of Plant (BOP) Hardware
- Avenues for BOP Cost Reductions:
 - Alternative hydrogen storage (i.e. All steel tank)
 - Eliminate DC/DC converter
 - Battery improvements
 - Further cost reductions, increased power density, complete forklift redesign, etc
 - Cathode humidification redesign or complete elimination

Results Summary

- BoP component costs driving total system cost
 - Potentially eliminate DC/DC converter
 - Potentially eliminate stack humidification
 - Required for operation at higher temperature and wider operating range
 - May require change of membrane material
 - Use all steel hydrogen storage tank
- Production volume has negligible effect on stack cost
 - Precious metal, graphite composite and commodity cost constant across all volumes
 - Material processing requirements limit throughput

Proposed Future Work

FY13	FY14, FY15, FY16
 Complete assessment 1 and 5 kW of SOFC systems for APU applications Update assessment of Backup Power applications 	 Complete additional new analyses Revisit and update previous analyses based upon technological advancements

Sensitivity Analysis: 10 kW System Cost 10,000 Production Volume

X-axis is total cost of fuel cell system (pre-markup). Numbers in brackets are the values of the cost drivers.

25 kW MHE PEM Fuel Cell Stack Manufacturing Cost Summary

Stack Component	100 Units (\$)	1000 Units (\$)	10,000 Units (\$)
Bipolar plates	1,461	1,475	1,457
MEA	6,887	6,138	4,941
Cooling gasket	280	280	280
Tie rods and hardware	40	40	40
End plates	80	80	80
Stack assembly	68	54	53

Note: All costs include manufacturing scrap

25 kW MHE PEM Fuel Cell BoP Manufacturing Cost Summary

BOP Component	100 Units (\$)	1,000 Units (\$)	10,000 Units (\$)
Battery	17,000	12,000	10,000
DC/DC Converter (Power)	8,915	7,718	6,024
Hydrogen Tank	3,494	3,373	3,373
Humidifier	2,500	2,000	1,700
H2 Recirc Blower & Controller	1,595	469	431
Hydrogen Regulator	1,400	1,200	1,000
Blower (Cathode Air)	1,260	1,010	885
Radiator	750	591	503
Other Components	4,503	3,710	3,198
Additional Work Estimate	3,100	2,500	2,000
System Assembly	58	46	45

BOP of (100) 25kW Units

Note: Battery , DC/DC Converter ,H2 Storage & Fittings Not Included

Battery

- DC/DC Converter (Power)
- Hydrogen Tank
- Humidifier
- ■H2 Recirc Blower & Controller
- ■Hydrogen Regulator
- Blower (Cathode Air)
- Radiator
- Additional Work Estimate

Other

25 kW MHE PEM Fuel Cell System Cost Summary

Description	100 Units	1,000 Units	10,000 Units
Total stack manufacturing cost, with scrap	\$8,815	\$8,068	\$6,851
Stack manufacturing capital cost	\$2,825	\$307	\$121
BOP	\$44,517	\$34,571	\$29,114
System assembly, test, and conditioning	\$279	\$267	\$266
Total system cost, pre-markup	\$56,436	\$43,213	\$36,352
System cost per gross KW, pre- markup	\$2,052	\$1,571	\$1,322
Sales markup	50%	50%	50%
Total system cost, with markup	\$84,654	\$64,820	\$54,528
System cost per gross KW, with markup	\$3,079	\$2,357	\$1,983

Battelle

nnovation

STRATEGIC ANALYSIS

Application of Manufacturing Cost Analysis Methodology to Automotive Fuel Cell Systems

Brian D. James Whitney G. Colella Jennie M. Moton

16 April 2013

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Presentation Outline

Purpose/Goals

- SA's Cost Analysis Philosophy
- General Steps in Cost Analysis
- Overview of 80kW Automotive System
- Cost Results
- Application to Other Systems

Purpose and Goals

Estimate of total cost of system when produced in quantity

- Understanding of how cost changes with manufacturing rate
- Identify key parameters that drive system cost
 - Understand cost sensitivity each parameter (Tornado charts)
- Discern cost differences between different design or manufacturing processes
 - Use as tool to pick design/process that leads to lowest cost
- Use as "proof" that cost claims are not just wishful thinking
 - Assumptions must be transparent and in adequate detail
- Force identification of changes between "lab design" and "mass-production design"
 - One-off design might be radically different than mass-produced design
 - Inventive team may not be best group to assess mass-produced design
 - Applies to both design and manufacturing methods

SA's Design for Manufacturing & Assembly (DFMA)[®]- Style Costing Methodology

DFMA[®] (Design for Manufacturing & Assembly) is a registered trademark of Boothroyd-Dewhurst, Inc.

- Used by hundreds of companies world-wide
- Basis of Ford Motor Company (Ford) design/costing method for the past 20+ years
- SA practices are a blend of:
 - "Textbook" DFMA[®], industry standards and practices, DFMA[®] software, innovation, and practicality
- DFMA[®] is Process-Based analysis
 - Mimics actual manufacturing & assembly processes and part dimensions/materials
 - Reflects manufacturing cost factors:
 - Material costs
 - Manufacturing methods
 - Machine Rate
 - Tooling Amortization

Estimated Cost = (Material Cost + Processing Cost + Assembly Cost) x Markup Factor

Cost Factors Included in Estimates

Basic Cost Modeling Work Flow

- 1. Obtain or create system design
 - Create system schematic to ensure full functionality/system-completeness
 - Mimic existing designs, project new configurations, speak with developers
- 2. Develop Bill of Materials (BOM) & physical embodiment of each component
 - Materials, scaling, dimensions, design embodiment
 - Sources: patents, existing products, conv. with inventors, own imagination
- 3. Model the manufacturing & assembly process
 - Specify process for each component and production stage
 - Manufacturing methods based on SA experience, industry input, analogy to similar products
- 4. Compute cost results and conduct sensitivity analysis
 - Tornado Charts, Monte Carlo analysis
- 5. Vet results with experts and incorporate feedback

Strategic Analysis Inc. Rules to Cost Analysis (Guidelines of Governing Philosophy)

- It's process-based cost analysis: break down complex systems into understandable simple steps.
- Quotes are for commodities (with multiple sellers & buyers). Use process-based analysis for everything else.
- Its about specifying the details (and knowing which details to specify)
 - detailed input leads to higher accuracy results, but takes longer
- Make many small assumptions, rather than a few big ones.
- Estimate....then do sensitivity studies.
- Be inventive: if you can imagine it, chances are someone can build it.
 - Factories are filled with custom machinery
- Apply principal of Kaizen (continuous improvement)
 - keep iterating until you are not longer able to improve.
- Factory robots are becoming commonplace
 - They are surprisingly inexpensive and very fast

Strategic Analysis Inc. Rules to Cost Analysis (Guidelines of Governing Philosophy)

- Only pay workers for the time they work.
 - Base on use of fractional/part-time works to reduce costs
- When unsure, model both/all pathways, and let cost results guide you to lowest cost pathway.
- Consult vendors frequently
 - They possess a wealth of information and are often very happy to help even if there is no immediate payback to them.
- Full time labor is 14 hours/day, 240 days/year (based on auto industry protocol).
 - i.e. 2 shifts of 7 hours (productive)
 - 5 days/week minus 2 weeks at Christmas plus 1 extra week in summer for maintenance
- There is a large difference between cost and price.
 - Price includes mark-up, non-recurring R&D costs, eng. design costs, warranty, advertising, marketing, taxes, etc.
- The three most important costing parameters are:
 - cycle time
 - capital cost
 - machine/line utilization

8

Example of Machine Rate Computation

1.5

1

0.5

0

n

Rate,

Machine

- CRF is % of capital cost that must be repaid each year to repay investment
- Discount Rate: 10% •
- Corp. Income Tax Rate: 40%
- Equip. Lifetime: 15 years
- CRF computed to be 0.175

Worker Only (no robot) Effec. Machine Rate

11 12 13 14 15

Motoman

HP-20

2012 80 kW_{electric} Automotive System Diagram

Orange Line: H2 flow Blue Lines: Air flow Purple Lines: Coolant flow

2012 160kWe Fuel Cell Bus System Diagram

System design is similar to automotive configuration. Key differences include: two stacks (not one), lower pressure, no expander, and longer target lifetime.

11

2012 Transportation Fuel Cell System Details

	2012 Auto Technology	2012 Bus Technology System		
	System			
Power Density (mW/cm ²)	984	716		
Total Pt loading (mgPt/cm ²)	0.196	0.4		
Net Power (kW _{net})	80	160		
Gross Power (kWgross)	88.24	177.10		
Operating Pressure (atm)	2.50	1.80		
Peak Stack Temp. (°C)	87	74		
Active Cells	369	739		
Membrane Material	Nafion on 25-micron ePTFE	Nafion on 25-micron ePTFE		
Radiator/ Cooling System	Aluminum Radiator, Water/Glycol Coolant, DI Filter, Air Precooler	Aluminum Radiator, Water/Glycol Coolant, DI Filter, Air Precooler		
Bipolar Plates	Stamped SS 316L with TreadSton Litecell™ Coating	Stamped SS 316L with TreadStone Litecell™ Coating		
Air Compression	Centrifugal Compressor,	Centrifugal Compressor,		
	Radial-Inflow Expander	Without Expander		
Gas Diffusion Layer (GDL)	Carbon Paper Macroporous Layer with Microporous Layer (Ballard Cost)	yer with Carbon Paper Macroporous Layer with		
Catalyst Application	3M Nanostructured Thin Film (NSTF™)	3M Nanostructured Thin Film (NSTF™)		
Air Humidification	Tubular Membrane Humidifier	Tubular Membrane Humidifier		
Hydrogen Humidification	None	None		
Exhaust Water Recovery	None	None		
Membrane Electrode Assembly (MEA) Containment and Gasketing	Screen Printed Seal on MEA Subgaskets, GDL crimpted to Catalyst Coated Membrane (CCM)	Screen Printed Seal on MEA Subgaskets, GDL crimpted to Catalyst Coated Membrane (CCM)		
Coolant & End Gaskets	Laser Welded (Cooling gasket), Screen-Printed Adhesive Resin (End gasket)	Laser Welded (Cooling), Screen-Printed Adhesive Resin (End)		
Freeze Protection	Drain Water at Shutdown	Drain Water at Shutdown		
Hydrogen Sensors	2 for FC System 1 for Passenger Cabin (not in cost estimate) 1 for Fuel System (not in cost estimate)	2 for FC System 1 for Passenger Cabin (not in cost estimate) 1 for Fuel System (not in cost estimate)		
End Plates/	Composite Molded End Plates with	Composite Molded End Plates with Compression		
Compression System	Compression Bands	Bands		
Stack Conditioning (hrs)	5	5		

Bus compared to auto:

Lower power density
Higher cat. loading
Higher net power

Lower pressure

12

PEM Fuel Cell Stack Concept

Example of Defining Physical Embodiment

5-Layer Membrane Electrode Assembly (MEA) and its Subgasket Sealing Frame

(Figures not to scale: They show much greater border area than is expected in an optimized design.)

Images from: "Membrane-Electrode-Assemblies for PEM Fuel Cells: Material Concepts, Design and Components Integration", Oliver D. Conradi, 3M, Workshop, Material till Bransleceller, KTH Stockhom, 16 June 2011.

Example of Manufacturing Process Train: Roll-to-roll process for Sub-Gasket Application

- Roll-to-roll process to surround & bond membrane with sub-gasket for structural support and sealing of gases during operation
- 1. Catalyst coated membrane (CCM) web formation
- 2. Attach membranes to first half of sub-gasket ladder web
- 3. Attach second half of sub-gasket ladder web to half sub-gasketed membrane
- 4. Attach Gas Diffusion Layers (GDL's) to sub-gasketed membrane (and cut to form individual) 5-layer MEA's

Reconsideration of MEA Gasket Results in Lower Cost

	2011 Approach		2012 Approa	ch	
Case	Frame Gasket	Sub-Gasket Roll-to-Roll Addition	Screen Printed Seals	Total Sub-gasket Approach	
Materials	\$1.78/kW	\$0.47/kW	\$0.03/kW	\$0.52/kW	
Manufacturing	\$1.56/kW	\$0.30/kW	\$0.24/kW	\$0.56/kW	
Tooling	\$0.04/kW	\$0.05/kW	\$0.0/kW	\$0.04/kW	
Total	\$3.39/kW	\$0.825/kW	\$0.27/kW	\$1.09/kW	
(All costs at 500k systems/year)					

Savings over MEA Frame Gasket Approach: ~\$2.30/kW

Note: We have used a cost of \$1.67/m² for 100 micron PET film. Since two layers are needed, this equates to \$4.18/m²_{active area}. If Dupont Teonex[®] (Polyethylene naphthalate, PEN) film is used at \$7.46/m², the total Sub-gasket approach cost increases to \$2.82/kW.

Auto Fuel Cell System: Stack and System Cost Results

2012 Auto Fuel Cell System: Power Density & Catalyst Loading Remain Dominant Cost Parameters

Upper & lower limits vetted with Fuel Cell Tech Team.

2012 Auto Fuel Cell System: 90% Confidence System Cost is between \$43 & \$52/kWe

2012 Technology Monte Carlo Analysis, 500k sys/year					
Parameter	Unit	Minimum Value	Likeliest Value	Maximum Value	
Power Density	mW/cm2	833	984	1464	
Pt Loading	mgPt/cm2	0.15	0.196	0.3	
Ionomer Cost	\$/kg	\$45.65	\$75.06	\$148.55	
GDL Cost	\$/m2	\$3.23	\$4.45	\$5.80	
Bipolar Plate & Coating Cost Factor		1	1	1.5	
Membrane Humidifier Cost	\$/system	\$61.00	\$61.00	\$100.00	
Product of Compr/Expander/Motor&MotorController Efficiencies		0.415	0.51	0.54	
Air Compressor Cost Factor	¢ / auret ana	0.8	1	1 \$210.45	
Balance of Air Compressor Cost Hydrogen Recirculation System Cost	\$/system \$/system	\$97.53 \$160.25	\$146.30 \$240.38	\$219.45 \$360.57	

Based on Monte Carlo analysis for 500k systems/year

A

2012 Automotive System Cost Continues Downward Trend

- Stack and System cost curves exhibit similar shape as seen in previous year's analysis.
- "Knee in curve" occurs at ~50k systems/year.
- Downward cost trend observed for subsequent analysis years

Other DFMA Applications: 40' Transit Bus Fuel Cell Power System

2012 Bus Total System Cost Results: ~\$200/kW at 1,000 systems per year

	2012 Bus System
Annual Production Rate	1,000
System Net Electric Power (Output)	160
System Gross Electric Power (Output)	177.10
Fuel Cell Stacks	\$21,651.24
Balance of Plant	\$8,707.03
System Assembly & Testing	\$152.34
Total System Cost (\$)	\$30,510.60
Total System Cost (\$/kW _{net})	\$190.69
Total System Cost (\$/kWgross)	\$172.28

A

* 2010 DOE AMR Joint DOE/DOT Bus Workshop, "Progress and Challenges for PEM Transit Fleet Applications", Tom Madden, UTC, 7 June 2010: 2010 UTC Preliminary Bus Fleet Cost Target: \$200-300/kW in 1,000's per year.

Other DFMA Applications: Stationary Fuel Cell Power Systems

Three Fuel Cell Technologies Examined:

- Low Temperature PEM (80°C Nafion[®] membrane)
- High Temperature PEM (160°C Polybenzimidazole (PBI) membrane)
- Solid Oxide (planar cells, 750°C operation)

Other DFMA Applications: High Pressure H₂ Storage Vessels

70MPa Compressed Gas Storage System

Material cost, driven by carbon fiber cost, and BOP costs dominate at all annual production rates.

23

Summary

Process based cost analysis useful for:

- Cost estimation at multiple manufacturing rates
- Determination of key cost drivers
- Iteration on cost comparisons to determine lowest cost design or process
- May be applied at approximate or very high level of detail
- 2012 estimates for 80kW Automotive FC Systems
 - \$43-\$52/kW (\$47/kW_{e-net}) @ 500k systems/year
- 2012 estimates for 160kW Bus FC Systems
 - \$180-\$233/kW (\$191/kW_{e-net}) @ 1,000 systems/year
- Standard outputs
 - System schematic
 - Component design
 - Cost variation with manufacturing rate
 - Tornado sensitivity chart
 - Monte Carlo analysis showing 90% confidence cost range

Sponsorship and Acknowledgements

This research was conducted under Award Number DE-EE0005236 to the US Department of Energy. The authors wish to thank Dr. Dimitrios Papageorgopoulos and Mr. Jason Marcinkoski of DOE's Office of Energy Efficiency and Renewable Energy (EERE) Fuel Cell Technologies (FCT) Program for their technical and programmatic contributions and leadership.

Author's Contact Information

Brian D. James, BJames@sainc.com, (703) 778-7114 Whitney G. Colella, Wcolella@sainc.com Jennie M. Moton, Jmoton@sainc.com

Strategic Analysis Inc. 4075 Wilson Blvd, Suite 200 Arlington VA 22203 (703) 527-5410 www.sainc.com

Questions?

