Lithium Ion Electrode Production NDE and QC Considerations

David Wood, Debasish Mohanty, Jianlin Li, and Claus Daniel

12/9/13

EERE Quality Control Workshop
Lithium Ion Electrode Production QC State-of-the-Art

• In-Line Measurement
 – Conventional in-line thickness and/or areal weight by beta transmission gauge:
 • Thickness measurement precision of ±0.2% over 2-1000 µm
 • But expensive equipment (several hundred thousand dollars or more)
 • And ionizing radiation hazard (typically 300-1000 mCi sources)
 – Optical inspection with HR-CCD cameras (only uses visible light for detection).
 – Optical and beta transmission techniques provide no compositional information.

• Off-line Measurement
 – XRF for areal weight (requires removal of sample from roll).
 – Optical microscopy

• Without feedback loops to electrode dispersion mixing and deposition steps, even the best NDE methods will not reduce scrap rate (i.e., electrode QC).
• However, cell QC will still be improved by simply removing scrap to avoid assembling defective electrode area into cells.
• Pass/fail criteria must be established industry wide for NDE methods to be meaningful and provide electrode and cell QC.
New Directions in Lithium Ion Electrode In-Line NDE

- Low-cost IR laser thickness measurement (can be done in multiple point scans across the web or an entire line scan).
- Low-cost IR thermography for defect identification for flaws not observable with optical methods (using a background heat source and IR camera).
- Acoustic agglomerate-size measurement of electrode dispersions as they are being pumped from the mixing tanks to the slot-die cavity.
- Thermal diffusivity measurement of electrodes to determine porosity via IR thermography.
- Could XRF instruments be engineered to be compatible with coating line speeds and give high enough accuracy on areal weight?
- Others such as spectrophotometric analysis for thickness and areal weight uniformity across roll.
- Three greatest needs:
 1. Pass/fail criteria for electrodes
 2. Correlation of defects with cell performance and capacity fade
 3. Feedback loops from coating to deposition
Construction of laser caliper (Keyence sensors) system on a slot-die coater to measure thickness

High-Voltage Lithium-Manganese-Rich Cathode (TODA HE5050) Thickness Measurement

Uniform wet-thickness during coating

Average thickness of cathode coating: \(118.51 \pm 2.57 \, \mu m\)

Where \(d\) represents the thickness value and \(\Delta d\) is the difference between two contiguous data.

IR Thermography Setup with ORNL Slot-Die Coater

- Current IR Camera: FLIR SC-8200
- Lens: 25 mm, no filters or extender rings
- Flash System: Hensel 6000 Joules
- Flash Power: 60%

Schematic of IR thermography method to detect flaws in dry electrodes
IR Imaging Detects Different Defects

- A temperature increase across defect region corresponds to a blister or agglomerate where heat can’t be released as fast.
- Temperature decreases correspond to pinholes and divots where heat is released faster.