70 MPa Fast-Fill Modeling & Validation Experiments

Bill Winters Thermal/Fluid Sci. & Eng. Dept. 8365 DOE Tank Safety Workshop April 29, 2010 SAND Number: 2010-2830 P

Sandia modeling and validation methods can be applied to the 70 MPa Fast Fill Problem

- Multi year effort to understand flow and heat transfer in compressed gas storage systems
 - Vessel Blowdown (supplies)
 - Vessel Fillup (receivers)
 - Interconnecting systems of tubes, valves and flow branches
- Network flow modeling capability we have developed dedicated software tools
 - TOPAZ
 - NETFLOW
 - Correlations are required for heat transfer & pressure drop
- Detailed CFD Modeling NEW and a work in progress
 - Multidimensional
 - No correlations are needed
- Transient PVT Validation Experiments provides essential data to validate all models

Presentation Outline

- Describe modeling approaches (Network & CFD)
- Describe methods for obtaining validation data
- Present Sandia results
- Describe a Sandia Network flow model for 70 MPa Fast – Fill
 - Validation using the data of Monde et. al.
 - Validation using the data of Terada et. al.
- Propose validation experiments for 70 MPa Fast Fill models.

The Problem

- These high pressure flows exhibit non-ideal gas behavior and are transient, turbulent and compressible (transonic, choking).
- Reservoir/receiver pressure ratios may are high (Ma>6!).
 - 5000:1 Typical for Sandia Systems
 - 1000:1 Typical for 70 MPa Fast-Fill (depending on fill strategy)
- Very limited model validation data is available.

Two modeling approaches provide a means to predict storage vessel transient pressures and temperatures.

NETFLOW models vessel connections (network)

- One dimensional flow in tubing
- Vessels modeled as single control volumes
- Correlations for tube pressure drop.
- Correlations for tube & vessel heat transfer
- Isolates and identifies locations for flow choking and unchoking (high Mach number sonic/super-sonic flow)
- Advantages
 - » Calculations are fast & cheap (seconds & minutes)
 - » Transfer times predicted accurately
- Disadvantages
 - » Heat transfer difficult to predict
 - » Correlations may not exist or may be "out of range"
 - » Temperature gradients in vessels cannot be predicted

FUEGO models vessel flows (CFD)

- Three dimensional flow and heat transfer
- Advantages
 - » Applicable to any geometry
 - » No correlations needed
 - » Temperature gradients in vessels predicted
- Disadvantages
 - » Calculations are computer intensive (days & weeks)
 - » Transonic flows (receivers) lead to show-stopping instabilities

FUEGO CFD Model

Model Validation

We seek to conduct a validation experiment that measures the gas pressure and some representative gas temperature in a vessel as a function of time while it is being filled (or emptied). A model that simulates the experiment and reproduces the measured pressure and temperature can be considered validated (at least for the range of parameters unique to the experiment).

- Vessel pressures are nearly uniform in time (except near underexpanded inlet jets) so a single transient pressure measurement should be sufficient.
- Transient temperature measurements with thermocouples have little value
 - It is difficult to prove that thermocouple response times are sufficient
 - Temperature distributions in vessels during and shortly after fill/discharge are far from uniform. What does measurement at a single point mean?
- The transient mass-averaged temperature is a viable validation measurement.
 - This is the temperature predicted by a network flow model
 - This temperature can be compared directly to the mass-averaged temperature computed in a CFD simulation.
 - It is representative of the total thermal energy of the gas.

Two methods can be used to measure $\overline{T}(t)$, the transient mass-averaged temperature.

Mass Flow Rate Method*

- 1. Measure transient gas pressure, P(t).
- 2. Measure initial gas mass, \mathbf{m}_{o}
- 3. Measure gas mass flow rate, m(t)
- 4. Compute mass-averaged gas density:

$$\overline{\rho}$$
(t)= $\left(m_{o} + \int_{o}^{t} \dot{m}(t) dt\right)/V$

5. Compute **T**(t) from the real gas equation of state:

$\overline{\mathbf{T}}(\mathbf{t})=\mathbf{f}_{T}\left(\overline{\mathbf{\rho}}(\mathbf{t}),\mathbf{P}(\mathbf{t})\right)$

Transient PVT Method**

- 1. Measure transient gas pressure, **P(t).**
- 2. Start a new filling/emptying test.
- Stop filling/emptying at t=t* by closing valve.
- 4. Wait until temperature of gas and tank walls are uniform at $t=t_{\infty}$
- 5. Measure $T(t_{\infty})$ and $P(t_{\infty})$ with a thermocouple and pressure transducer
- 6. Use real gas equation of state to compute mass averaged density at **t=t***: $\overline{\rho}(\mathbf{t}_{\infty}) = \mathbf{f}_{\rho}(\mathbf{T}(\mathbf{t}_{\infty}),\mathbf{P}(\mathbf{t}_{\infty})) = \overline{\rho}(\mathbf{t}^{*})$
- 7. Compute T(t*) from the real gas equation of state:

$$\overline{\overline{\mathbf{T}}}(\mathsf{t}^*) = \mathbf{f}_{\mathsf{T}}(\overline{\rho}(\mathsf{t}^*), \mathsf{P}(\mathsf{t}^*))$$

- 8. Repeat 2-7 as required.
- * Accurate $\dot{m}(t)$ measurements are difficult for compressible flow.

**S. C. Johnston and H. A. Dwyer, "Bulk Gas Temperature Measurement During Vessel Discharge using Transient PVT," <u>Rev. Sci. Instrum.</u>, <u>46</u>, No. 12, December 1975.

Determination of transient mass average gas temperature using mass flow meters has be difficult.

- Powertech 70MPa Multi Client Fueling Studies utilized different types of mass flow meters.
- Final mass in tank was determined by integrating mass flow rate data.
- Final mass in tank was also determined from final (t=t_∞) pressure and temperature.
- These measurements seldom matched and produced thermodynamically inconsistent transient mass averaged gas temperatures.

Sandia has used to Transient PVT method to obtain validation data for supply and receiver fill/discharge models.

vent

- Transient vessel pressures were measured.
- Transient PVT tests determined mass averaged temperature points for the supply and receiver simultaneously.
- Mass balances were within 1%
- Supply volume 200 cc
- Receiver volumes 90, 700, 13000 cc.
- Supply pressures: 300, 3000, 6000 PSI
- Helium at room temperature
- Pressure equilibrium times: seconds
- Thermal equilibrium times: 30
 seconds
- Data collected by S. F. Rice, N. J. Paradiso and T. G. Felver

NETFLOW network models were validated with Sandia transient PVT data.

- NETFLOW models were validated for 6 high precision transient PVT simulations (tests).
- Validation demonstrated the accuracy of existing supply heat transfer correlations.
- Improvements were made to receiver heat transfer correlations but more work is needed to capture early time behavior.

FUEGO simulations demonstrate the value of CFD in predicting vessel flow and heat transfer.

- Supply mass averaged temperature and pressure were predicted.
- No heat transfer correlations were necessary.
- Calculations demonstrate transition free convection to be the dominant heat transfer mode.
- Transient PVT data from G. Clark & M. Libkind 1983.

FUEGO mass averaged T.

Preliminary FUEGO CFD calculations demonstrate the complexity of receiver heat transfer.

A Network Model for Tank Filling

Model Validation with Monde et. al.* data.

* M. Monde, Y. Mitsutake, P. L. Woodfield and S. Maruyama, "Characteristics of Heat Transfer and Temperature Rise of Hydrogen during Rapid Hydrogen Filling at High Pressure," <u>Heat Transfer-Asian Research</u>, <u>Vol. 36</u>, No. 1, 2007.

Model Validation with Terada et. al.* data.

Test Matrix

Tank type	TYPE 3	TYPE 4
Filling time (sec)	60	300
	120	600
	300	
Filling pattern	Constant rate of	
	pressure rise	
Start pressure	2MPa	
Filling pressure	35MPa	
Ambient temp.	20°C	
Filling gas temp.	Ambient	

gas-center

gas-upper

liner-upper

liner-dome

Model - Twa

600

700

Model

500

* T. Terada, H. Yoshimura, Y. Tamura, H. Mitsuishi and S. Watanabe, "Thermal Behavior in Hydrogen Storage Tank for FCV on Fast Filling (2nd Report)," SAE Technical Paper 2008-01-0463, 2008 World Congress, Detroit, MI, April 14-17, 2008.

High quality data is needed for 70 MPa Fast Fill model validation.

- Data would benefit both "network" and CFD models.
- Validation data must include (but not be limited to) transient tank pressure and transient mass average temperatures.
- Transient tank pressure should be measured using a transducer in the tank.
- Transient mass-averaged temperature data should be obtained from transient PVT method or from a well-calibrated mass flow meter and a transient pressure measurement. Transient thermocouple measurements should NOT be used.
- Model validation would be accomplished by simulating the experiment
 - Time dependent boundary conditions must be measured experimentally
 - » Pressure/Temperature Inlet BC Measure incoming total temperature and pressure
 - » Mass Flow Rate Inlet BC Measure mass flow rate and incoming total temperature
 - Tank wall thermal properties should be well characterized (thickness, thermal conductivity, heat capacity, for all layers)
- Tank sizes and design should be relevant to 70 MPa fast fill (Type 3 and Type 4 tanks)
- The tank design must not be proprietary.

