

Overview of Hydrogen and Fuel Cell Activities

Richard Farmer

Deputy Program Manager
Fuel Cell Technologies Program
United States Department of Energy

Mountain States Hydrogen Business Council
September 14, 2010

- ✓ Double Renewable Energy Capacity by 2012
- ✓ Invest \$150 billion over ten years in energy R&D to transition to a clean energy economy
- ✓ Reduce GHG emissions 83% by 2050

U.S. Energy Consumption

U.S. Primary Energy Consumption by Source and Sector

Total U.S. Energy = 99.3 Quadrillion Btu Source: Energy Information Administration, *Annual Energy Review 2008*, Tables 1.3, 2.1b-2.1f.

Share of Energy Consumed by Major Sectors of the Economy, 2008

Source: Energy Information Administration, *Annual Energy Review 2008*.

The Program has been addressing the key challenges facing the widespread commercialization of fuel cells.

echnology Barriers*

Fuel Cell Cost & Durability

Targets*:

Stationary Systems: \$750 per kW, 40,000-hr durability

Vehicles: \$30 per kW, 5,000-hr durability

Hydrogen Cost

Target*: \$2 – 3 /gge, (dispensed and untaxed)

Hydrogen Storage Capacity

Target: > 300-mile range for vehicles—without compromising interior space or performance

Technology Validation:

Technologies must be demonstrated under real-world conditions.

Economic & Institutional Barriers

Safety, Codes & Standards Development

Domestic Manufacturing & Supplier Base

Public Awareness & Acceptance

Hydrogen Supply & Delivery Infrastructure

Market Transformation

Assisting the growth of early markets will help to overcome many barriers, including achieving significant cost reductions through economies of scale.

Fuel Cells — Where are we today?

Fuel Cells for Stationary Power, Auxiliary Power, and Specialty Vehicles

The largest markets for fuel cells today are in stationary power, portable power, auxiliary power units, and forklifts.

~75,000 fuel cells have been shipped worldwide.

~24,000 fuel cells were shipped in 2009 (> 40% increase over 2008).

Fuel cells can be a cost-competitive option for critical-load facilities, backup power, and forklifts.

In the U.S., there are currently:

- > 200 fuel cell vehicles
- ~ 20 fuel cell buses
- ~ 60 fueling stations

Several manufacturers—including Toyota, Honda, Hyundai, Daimler, GM, and Proterra (buses) — have announced plans to commercialize vehicles by 2015.

The Role of Fuel Cells in Transportation

Production & Delivery of Hydrogen

In the U.S., there are currently:

- **~9 million metric tons** of H₂ produced annually
- > **1,200 miles** of H₂ pipelines

Fuel Cell R&D — Progress: Cost

Projected high-volume cost of fuel cells has been reduced to \$61/kW (2009)

- More than 15% reduction in the last two years
- More than 75% reduction since 2002
- 2008 cost projection was validated by independent panel**

As stack costs are reduced, balance-of-plant components are responsible for a larger % of costs.

^{*}Based on projection to high-volume manufacturing (500,000 units/year).

^{**}Panel found \$60 – \$80/kW to be a "valid estimate": http://hydrogendoedev.nrel.gov/peer_reviews.html

Key R&D Gaps

Catalysis

- Low and no-content PGM cathode, on corrosive resistant support, with containment and anion tolerance
- Improved catalyst nanostructure design and electrode/MEA optimization for novel catalysts

MEAs, Components & Integration

- Need to develop, test and integrate (into MEA) robust, manufacturable low-cost membranes that are tolerant to reformate impurities and operate at high-T (e.g. 95°C), low-humidity; related ionomers. High operation and maintenance costs
- Manufacturable, electrodes, MEAs, having optimized ionomer/support structures, with understanding of the interface as it relates to transport and durability for low-T and high-T operation (120-150; 150-200 °C)
- Standardized, accelerated durability tests of "real-world" degradation mechanisms for integrated systems.

Innovative concepts

AFCs, high-T fuel cells for transportation applications, reversible SOFCs, novel fuel cell stack designs for early market applications

MCFC and PAFC high-T fuel cells (gap analysis report/workshop)

Low cost stack components to address durability and performance (electrolyte support and durable cathode - MCFC; durable low-Pt catalysts, supports, bipolar plates - PAFC)

Low and high T fuel cell **BOP** and fuel processing

- Low cost, durable, converters, blowers, humidifier and sensors for low and high-T
- Catalysts and systems for fuel flexibility, gas clean up, and impurities studies

Hydrogen Production Pathways

Challenge: Reduce cost of H₂ (delivered, dispensed, and untaxed)

Enabling technologies under development by

- 1 The Office of Fossil Energy
- 2 The Biomass Program
- 3 The Nuclear Hydrogen Initiative
- 4 The Solar Energy Technologies Program
- 5 The Office of Basic Energy Sciences
- 6 The Wind Program
- 7 The Geothermal Technologies Program
- 8 The Hydrogen Utility Group
- 9 The International Partnership for a Hydrogen Economy

Hydrogen Costs Are Being Reduced

Progress has been made in all distributed production pathways and will continue work to reduce cost in central production pathways.

Hydrogen Production R&D 2010 Progress & Accomplishments - Examples

The key objective is to reduce cost of H₂ (delivered, dispensed & untaxed)

Electrolysis

> 20% reduction cost of electrolyzer cell via a 55% reduction in catalyst loading from new process techniques (Proton Energy)

<u>Algae</u>

Continuous fermentative / photobiological H₂ production from potato waste achieved a maximum molar yield of 5.6 H₂ / glucose (NREL)

Hydrogen Production R&D2010 Progress & Accomplishments - Examples

The key objective is to reduce cost of H₂ (delivered, dispensed & untaxed)

Reforming & Separation Processes

Minimized the acid sites for undesired reaction pathways for aqueous phase reforming of BDL using Pt-Re/C catalysts, resulting in H2 yields well above 60%. (PNNL)

Hydrogen from Coal

Initiated tests under water-gas shift feed streams and demonstrated a H₂ flux rate of 411scfh/ft². (Eltron)

Lifetime testing reactor operated several tests to 600 hours; initial baseline membrane testing in H₂/N₂ feed streams show stable performance at 200 scfh/ft².

DOE 08/28/2010 1

Hydrogen Delivery

Delivery Technologies

Stations
Using
Compressed
Gaseous
Hydrogen

Stations
Using Cryocompressed
Hydrogen
(from liquid
hydrogen
delivery)

DOE 09/09/2010 12

- ~30% reduction in tube trailer costs
- >20% reduction in pipeline costs
- ~15% reduction liquid hydrogen delivery costs

*Projected cost, based on analysis of state-of-the-art technology

RECENT ACCOMPLISHMENTS

- Testing demonstrated Cryopump flow rates up to 2 kg / min exceeding targets (BMW, Linde, LLNL)
 - Provides lowest cost compression option for a station and meets the challenges of sequential vehicle refueling
 - Demonstrated manufacturability and scalability of glass fiber wrapped tanks through sequential prototypes (3 to 24 to 144 inches in length) (LLNL)
 - Completed design criteria and specifications for centrifugal compression of hydrogen which are projected to meet or exceed DOE targets. Compressor designed using off-the-shelf parts is in testing (Concepts NREC)

2010 Hydrogen Delivery Progress

Tube Trailers (Gaseous Hydrogen)

2009 Modeled High-Volume Hydrogen Delivery Cost: \$2.85 - \$3.15/gge

<u>Recent Progress</u> (Lincoln Composites and Livermore National Laboratory):

- Higher capacity with carbon fiber
 Doubled capacity to 600 kg H₂
 - Demonstrated large scale dome molding, tubular welding, and filament winding of tanks
- Trailer with glass fibers
 - Demonstrated stronger glass fibers at lower temperatures to project reduced delivery tank costs
 - Identified pathway to triple capacity: 1,100 kg H₂
 - Potential for up to 50% trailer cost reduction

Future Work:

- High performance glass fiber composite pressure vessels
- High pressure hydrogen tank for storage and gaseous truck delivery
- CF testing and failure analysis
- Integrated alloy/concrete vessel design and fabrication for low-cost storage at the station

Critical Challenges for H₂ Delivery

Key R&D Gaps

Compression Technologies

- Reliability
- Efficiency
- Cost
- Materials Compatibility

Pipeline

- Safety
- Reliability
- Durability

Bulk Storage

- Hydrogen Quality
- Cost (fluctuating raw materials cost)
- Materials Compatibility

Liquefacation

- Cost
- Energy Efficiency

15

On-board Hydrogen Storage

Challenge: Providing a 300 mile driving range without sacrificing passenger and cargo space

Compressed 350 bar

Compressed
700 bar
and
Cryo-compressed

Low-pressure,
Materials-based:
Adsorbents;
Metal Hydrides;
Chemical Hydrides

Near-term Mid-term Long-term

DOE 09/09/2010

Compressed gas offers a near- term option, but cost is an issue

Compressed gas storage offers a near-term option for initial vehicle commercialization and early markets

- Validated driving range of up to ~ 430 mi
- Cost of composite tanks is challenging
 - carbon fiber layer estimated to be >75% of cost
- Advanced materials R&D under way for the long term

¹ Cost estimate in 2005 USD. Includes processing costs.

Projected Capacities for Complete 5.6-kg H₂ Storage Systems

Projected Ranges of System Gravimetric Storage Capacity

For Chemical, Metal Hydride, Sorbent and Physical Storage Technologies

Based on analysis using the best available data and information for each technology analyzed in the given year.

Projected Ranges of System Volumetric Storage Capacity

For Chemical, Metal Hydride, Sorbent and Physical Storage Technologies

2015 Target

2010 Target

2010 Target

2010 Target

2010 Target

2010 Target

Year

Critical Challenges for H₂ Storage

Key R&D Gaps

System

- Cost
- Performance
 - Gravimetric
 - Volumetric
 - Lifecycle
 - Manufacturability

Materials

- Capacity
- Thermodynamics
- Kinetics
- Cycling

Technology Validation2010 Vehicles Progress & Accomplishments

Demonstrations are essential for validating the performance of technologies in integrated systems, under real-world conditions.

RECENT ACCOMPLISHMENTS

Vehicles & Infrastructure

- Fuel cell durability
 - 2,500 hours projected (nearly 75K miles)
- Over 2.8 million miles traveled
- Over 114 thousand total vehicle hours driven
- Fuel cell efficiency 53-59%
- Vehicle Range: ~196 254 miles
- Over 134,000 kg- H₂ produced or dispensed*
- 152 fuel cell vehicles and 24 hydrogen fueling stations have reported data to the project

Buses

- DOE is evaluating real-world bus fleet data (DOT collaboration)
 - H₂ fuel cell buses have a range of 39% to 141% better fuel economy when compared to diesel & CNG buses

Forklifts

 Forklifts at Defense Logistics Agency site have completed more than 18,000 refuelings

Recovery Act

 NREL is collecting operating data from deployments for an industry-wide report

^{*} Not all hydrogen produced is used in vehicles

CHHP: A promising system

We are participating in a project to demonstrate a combined heat, hydrogen, and power (CHHP) system using biogas.

- System has been designed, fabricated and shop-tested
- Improvements in design have led to higher H₂-recovery (from 75% to >85%)
- On-site operation and data-collection planned for FY10 FY11

Public-Sector Partners:

South Coast Air Quality Management District

California Air Resources Board

Combined heat, hydrogen, and power systems can:

- Produce clean power and fuel for multiple applications
- Provide a
 potential
 approach to
 establishing an
 initial fueling
 infrastructure

Fuel Cell Energy & Air Products

Infrastructure Analysis CHHP vs. SMR

Hydrogen production costs for a stand-alone steam methane reforming (SMR) station and high-temperature CHHP application were compared. Costs are dependent on natural gas costs. CHHP applications may be more cost-effective at lower production capacities.

In cases where there is a low demand for hydrogen in early years of fuel cell vehicle deployment, CHHP may have cost advantages over on-site SMR production.

Source: Fuel Cell Power Model

Recovery Act Funding for Fuel Cells

DOE announced more than \$40 million from the American Recovery and Reinvestment Act to fund 12 projects, which will deploy up to 1,000 fuel cells — to help achieve near term impact and create jobs in fuel cell manufacturing, installation, maintenance & support service sectors.

FROM the LABORATORY to DEPLOYMENT:

DOE funding has supported R&D by <u>all</u> of the fuel cell suppliers involved in these projects.

Approximately \$54 million in cost-share funding from industry participants for a total of about \$96 million.

COMPANY	AWARD	APPLICATION
Delphi Automotive	\$2.4 M	Auxiliary Power
FedEx Freight East	\$1.3 M	Specialty Vehicle
GENCO	\$6.1 M	Specialty Vehicle
Jadoo Power	\$2.2 M	Backup Power
MTI MicroFuel Cells	\$3.0 M	Portable
Nuvera Fuel Cells	\$1.1 M	Specialty Vehicle
Plug Power, Inc. (1)	\$3.4 M	СНР
Plug Power, Inc. (2)	\$2.7 M	Backup Power
Univ. of N. Florida	\$2.5 M	Portable
ReliOn Inc.	\$8.5 M	Backup Power
Sprint Comm.	\$7.3 M	Backup Power
Sysco of Houston	\$1.2 M	Specialty Vehicle

ARRA Fuel Cell Units in Operation

U.S. Fuel Cell Deployments Using Market Transformation and Recovery Act Funding

Example: California

Hydrogen Fueling Stations

- > 20 stations currently operating
 - ~ 10 additional stations planned
- •Hydrogen Fuel Cell Vehicle Deployments: CA Fuel Cell Partnership is assessing the potential to deploy over 4,000 vehicles by 2014 50,000 vehicles by 2017

Potential H2 Communities in Southern California

http://www.fuelcellpartnership.org/

Example - Executive Order 13514

On October 5, 2009
President Obama signed
Executive Order 13514 –
Federal Leadership in
Environmental, Energy, and
Economic Performance

• Requires Agencies to:

- Set GHG reduction Targets
- Develop Strategic Sustainability Plans and provide in concert with budget submissions
- Conduct bottom up Scope 1, 2 and 3 baselines
- Track performance

Examples:

- Achieve 30% reduction in vehicle fleet petroleum use by 2020
- Requires 15% of buildings meet the Guiding Principles for High Performance and Sustainable Buildings by 2015
- Design all new Federal buildings which begin the planning process by 2020 to achieve zero-net energy by 2030

Potential opportunities for fuel cells and other clean energy technologies....

Examples

- DLA: material handling equipment and H₂ ICE shuttle buses
- FAA: ground support equipment and backup power
- APTO: ground support equipment and H₂ ICE shuttle buses
- Army incl. CERL/TARDEC: backup power, waste to energy, and H₂ ICE shuttle buses
- NPS: renewably generated backup power and H₂ ICE shuttle buses
- ONR/USMC: utility scale renewable hydrogen generation and H₂ ICE shuttle buses
- NASA: backup power and H₂ ICE shuttle buses

DLA, DDSP - First of several 15,000 fills/yr sites

Collaborations

Federal Agencies

- DOC
 EPA
 NASA
- DOD GSA
- DOEd
 DOI
 USDA

•NSF

- DOT DHS •USPS
- Interagency coordination through stafflevel Interagency Working Group (meets monthly)
- Assistant Secretary-level Interagency Task Force mandated by EPACT 2005.

Universities

~ 50 projects with 40 universities

International

- IEA Implementing agreements –
 25 countries
- International Partnership for the Hydrogen Economy – 16 countries, 30 projects

DOE Fuel Cell Technologies Program*

- Applied RD&D
- Efforts to Overcome Non-Technical Barriers
- Internal Collaboration with Fossil Energy, Nuclear Energy and Basic Energy Sciences

Industry Partnerships & Stakeholder Assn's.

- FreedomCAR and Fuel Partnership
- National Hydrogen Association
- · U. S. Fuel Cell Council
- Hydrogen Utility Group
- ~ 65 projects with 50 companies

State & Regional Partnerships

- · California Fuel Cell Partnership
- California Stationary Fuel Cell Collaborative
- SC H₂ & Fuel Cell Alliance
- Upper Midwest Hydrogen Initiative
- Ohio Fuel Coalition
- Connecticut Center for Advanced Technology

National Laboratories

National Renewable Energy Laboratory

P&D, S, FC, A, SC&S, TV

Argonne A, FC, P&D

Los Alamos S, FC, SC&S

Sandia P&D, S, SC&S

Pacific Northwest SC&S,P&D, S, FC, A

Oak Ridge P&D, S, FC, A

Lawrence Berkeley FC, A

Lawrence Livermore P&D, S Savannah River S, P&D Brookhaven S, FC Idaho P

Other Federal Labs: Jet Propulsion Lab, National Institute of Standards & Technology, National Energy Technology Lab

P&D = Production & Delivery; **S** = Storage; **FC** = Fuel Cells; **A** = Analysis; **SC&S** = Safety, Codes & Standards; **TV** = Technology Validation

Key Program Documents

Fuel Cell Program Plan

Outlines a plan for fuel cell activities in the Department of Energy

- → Replacement for current Hydrogen Posture Plan
- → To be released in 2010

Annual Merit Review Proceedings

Includes downloadable versions of all presentations at the Annual Merit Review

→ Latest edition released June 2010

www.hydrogen.energy.gov/annual_review10_proceedings.html

Annual Merit Review & Peer Evaluation Report

Summarizes the comments of the Peer Review Panel at the Annual Merit Review and Peer Evaluation Meeting

→ Latest edition released October 2009

www.hydrogen.energy.gov/annual_review08_report.html

Annual Progress Report

Summarizes activities and accomplishments within the Program over the preceding year, with reports on individual projects

→ Latest edition published November 2009

www.hydrogen.energy.gov/annual progress.html

Next Annual Review: May 9 – 13, 2011 Washington, D.C.

http://annualmeritreview.energy.gov/

Thank you

Richard.Farmer@ee.doe.gov

hydrogenandfuelcells.energy.gov

Backup Slides

Funding for Fuel Cells and Hydrogen DOE FY 1 1 Budget Request

Total Requested Funding: ~\$256 Million

^{*} SC funding includes BES and BER

^{**} NE FY11 Request TBD (FY10 funding was \$5M)

Transformation of Biogas to Fuel & Power

ENERGY

Models were developed to quantify the benefits of fuel cells operating on bio-methane, or hydrogen derived from bio-methane. These applications may mitigate energy and environmental issues and provide an opportunity for the commercialization of fuel cells.

Source

Animal Waste

Landfills

Water Treat. **Plant**

Production & Cleanup

Anaerobic Digester

Biogas

Clean-Up System

Distribution & Utilization

Power Grid

Injection in NG **Pipelines**

Vehicle Fueling Station

H2A Production Model

Platform for new cost analysis model aimed at calculating levelized cost of biomethane (from biogas).

Fuel Cell Power Model

Analysis of stationary fuel cell systems—in standalone and CHHP models.

SERA Model

Optimization tool, may also be used for related infrastructure analysis upon modification.

13M tons/yr of biomethane from biogas are available in the U.S. for fuel and power production. 33

Portfolio Management & Progress

Many new material systems have been investigated through the three Materials Centers of Excellence.

Chemical Hydrogen Storage

- > 130 materials/combinations have been examined
- ~ 95% discontinued
- ~ 5% still being investigated-Ammonia Borane (AB) solid, ammonium borohydride, or mixture of AB with ionic liquids as liquid fuels

More than 81 distinct material systems assessed experimentally—not including catalyst/additive studies

- ~ 75% discontinued
- ~ 25% still being investigated

Computational/theoretical screening done on more than 20 million reaction conditions for metal hydrides

Hydrogen Sorption

- ~ 210 materials investigated
- ~ 80% discontinued
- ~ 20% still being investigated

