DOE Hydrogen and Fuel Cell Activities

Panel Discussion

Dr. Sunita Satyapal
Chief Engineer & Deputy Program Manager
Fuel Cell Technologies Program
United States Department of Energy

SAE World Congress
April 15, 2010
The DOE Program has been addressing key challenges facing the widespread commercialization of fuel cells.

Fuel Cell Cost & Durability
- Targets*:
 - Vehicles: $30 per kW, 5,000-hr durability
 - Stationary Systems: $750 per kW, 40,000-hr durability

Hydrogen Cost
- Target: $2 – 3 /gge, delivered

Hydrogen Storage Capacity
- Target: > 300-mile range for vehicles—without compromising interior space or performance

Technology Validation:
- Technologies must be demonstrated under real-world conditions.

Market Transformation
- Assisting the growth of early markets will help to overcome many barriers, including achieving significant cost reductions through economies of scale.

Key Challenges

- **Technology Barriers**
 - Fuel Cell Cost & Durability
 - Hydrogen Cost
 - Hydrogen Storage Capacity

- **Economic & Institutional Barriers**
 - Safety, Codes & Standards Development
 - Domestic Manufacturing & Supplier Base
 - Public Awareness & Acceptance
 - Hydrogen Supply & Delivery Infrastructure

*Metrics available/under development for various applications
DOE Fuel Cell Technologies Program R&D Progress

Program participants have:

Reduced the high volume cost of fuel cells to $61/kW*

- More than 35% reduction in the last two years
- More than 75% reduction since 2002.

More than doubled durability in the last few years

- More than 7,300 hrs in the lab (single cell).
- More than 2,500 hrs (75,000 miles) in DOE Learning Demo vehicles.

Demonstrated adequate driving range

- Up to 254 miles in DOE Learning Demo vehicles. Verified ~430 miles on 1 fill with more recent technology.

Reduced the cost of H₂ technologies

- Met targets for distributed natural gas. Roughly 15-30% cost reductions for delivery, up to 40% cost reductions for H₂ production on track towards long term goals of $2-3/gge.

*Based on projection to high-volume manufacturing (500,000 units/year).
Methodology validated by Independent Panel: $60 – $80/kW is a “valid estimate”: http://hydrogendoedev.nrel.gov/peer_reviews.html
Summary & Questions

- Need to reduce H$_2$ cost (production, delivery & storage)

- Need to sustain R&D (e.g. need both cost and durability) and cross-cutting activities (e.g. safety, codes and standards)

What fuel cell cost is acceptable?
What H$_2$ cost is acceptable?
What are the priorities for RDD&D and in each key area (e.g. BOP, etc.)?

Webinar planned in mid-May to solicit industry input on fuel cell risk analysis activity. If interested contact Sunita.Satyapal@ee.doe.gov or Mark.Ruth@nrel.gov

Note: Costs in analyses assume high volume costs
Thank you

http://www.eere.energy.gov/hydrogenandfuelcells