Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

Workshop:
Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles

December 11, 2009

John Garbak, Todd Ramsden Keith Wipke, Sam Sprik, Jennifer Kurtz
Fuel Cell Vehicle Learning Demonstration

Project Objectives and Targets

- **Objectives**
 - Validate H₂ FC Vehicles and Infrastructure in Parallel
 - Identify Current Status and Evolution of the Technology
 - Objectively Assess Progress Toward Technology Readiness
 - Provide Feedback to H₂ Research and Development

Key Project Targets

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>2009</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Cell Stack Durability</td>
<td>2000 hours</td>
<td>5000 hours</td>
</tr>
<tr>
<td>Vehicle Range</td>
<td>250+ miles</td>
<td>300+ miles</td>
</tr>
<tr>
<td>Hydrogen Cost at Station</td>
<td>$3/gge</td>
<td>$2-3/gge</td>
</tr>
</tbody>
</table>

Photo: NREL
Industry Partners:
Four Automaker/Energy-Supplier Teams
Vehicle Deployment Complete at 140 FCVs, Some Early Vehicles Retired

(1) Retired vehicles have left DOE fleet and are no longer providing data to NREL
DOE Learning Demo Fleet Has Surpassed
100,000 Vehicle Hours and 2.3 Million Miles

Gen 2 vehicles make up most of 2nd bulge at low hours/miles

Some Gen 1 vehicles have now been retired (red bars)
Project Exploring 4 Types of Hydrogen Refueling Infrastructure: Delivered and Produced On-Site

Mobile Refueler
Sacramento, CA

Delivered Liquid, 700 bar
Irvine, CA

Steam Methane Reforming
Oakland, CA

Water Electrolysis
Santa Monica, CA

Total of 115,000 kg H₂ produced or dispensed

Infrastructure Hydrogen Production Methods

- Delivered Compressed H₂
- Natural Gas On-site Reforming
- Electrolysis
- Delivered Liquid H₂

Created Aug-27-09 1:03pm

Online Stations

Number of Stations

 Created Aug-27-09 1:03pm
Refueling Stations Test Performance in Various Climates; Learning Demo Stations Comprise ~1/3 of all U.S. Stations
Average Ambient Temperature of Learning Demo Vehicles Spans Most Climates

Average Ambient Trip Temperature: DOE Fleet

Max Op = 140.0 °F

Min Op = -5.8 °F

26.9 % trips above 28 °C

1.4 % trips below 0 °C

Data distributed normally around 20 °C

More time spent below freezing due to Gen 2 freeze capability
Daily Driving Distance

Daily Distance: DOE Fleet

Cumulative Frequency
@ 20 miles
DOE Fleet: 48.4%
NHTS: 27.2%

Cumulative Frequency
@ 40 miles
DOE Fleet: 68.1%
NHTS: 52.9%

2001 NHTS Data Includes Car, Truck, Van, & SUV day trips
ASCII.csv Source: http://nhts.ornl.gov/download.shtml#2001
Fuel Economy

(1) One data point for each make/model. Combined City/Hwy fuel economy per DRAFT SAE J2572.
(2) Adjusted combined City/Hwy fuel economy (0.78 x Hwy, 0.9 x City).
(3) Excludes trips < 1 mile. One data point for on-road fleet average of each make/model.
(4) Calculated from on-road fuel cell stack current or mass flow readings.
Vehicle Driving Range

Vehicle Range¹

<table>
<thead>
<tr>
<th></th>
<th>Gen 1</th>
<th>Gen 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyno Range (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Window-Sticker Range (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-Road Range (4)(5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Range is based on fuel economy and usable hydrogen on-board the vehicle. One data point for each make/model.
(2) Fuel economy from unadjusted combined City/Hwy per DRAFT SAE J2572.
(3) Fuel economy from EPA Adjusted combined City/Hwy (0.78 x Hwy, 0.9 x City).
(4) Excludes trips < 1 mile. One data point for on-road fleet average of each make/model.
(5) Fuel economy calculated from on-road fuel cell stack current or mass flow readings.
Fuel Cell System (including H2 storage) Close to 2010 and 2015 W/L and W/kg Targets

Significant Improvements Seen in Specific Power (…systems getting lighter)

Power Density Held Similar Between Gen 1 and Gen 2 (…same size or larger)
Cumulative H2 Produced or Dispensed

Cumulative Hydrogen Produced or Dispensed Through 2009 Q2

- Mass of Hydrogen (1000 kg)
- Number of Stations

Calendar Quarter

Created 2009-Aug-27 1:09 pm
Refueling Times are Short; Amounts are Reflective of Demonstration-Sized Systems

Results from 21,000 Refueling Events

Average Refueling Time is 3.26 minutes

Average Refueling Amount is 2.14 kg
Actual Vehicle Refueling Rates from 21,000 Events: Measured by Stations or by Vehicles

Histogram of Fueling Rates
All Light Duty Through 2009Q2

- Average rate = 0.78 kg/min
- 24% of refueling events exceeded 1 kg/min

Created: Aug-14-09 10:09 AM
Comparison of Fueling Rates for 350 and 700 bar Pressure Fueling Events

Histogram of Fueling Rates
350 vs 700 bar Fills - All Light Duty Through 2009Q2

<table>
<thead>
<tr>
<th>Fill Type</th>
<th>Avg (kg/min)</th>
<th>% > 1</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>350 bar</td>
<td>0.82</td>
<td>29%</td>
<td>17847</td>
</tr>
<tr>
<td>700 bar</td>
<td>0.62</td>
<td>3%</td>
<td>3792</td>
</tr>
</tbody>
</table>

- 350 bar: 5 minute fill of 5 kg at 350 bar
- 700 bar: 3 minute fill of 5 kg at 350 bar

700 bar fills are currently 27% slower than 350 bar fills

Created: Aug-31-09 12:59 PM
Infrastructure Maintenance

Maintenance: Average Labor Hours Per Station Since Inception
Through 2009 Q2

- Replacement
- Repair
- Other
- Check Only
- Adjustment

Scheduled
Un-Scheduled

Comparison of Scheduled/Un-Scheduled Maintenance

- Hours
- # of Events

Created: Aug-17-09 12:25 PM
Fueling Station Maintenance by System

Hydrogen Fueling Station Maintenance

By Number of Events
Total Number of Events = 2291
- system control & safety: 21%
- compressor: 19%
- reformer: 14%
- electrolyzer: 14%
- dispenser: 14%
- valves & piping: 14%
- electrical: 14%
- storage: 14%

By Labor Hours
Total Hours = 11119
- system control & safety: 20%
- compressor: 17%
- reformer: 12%
- electrolyzer: 22%
- dispenser: 14%
- valves & piping: 14%
- electrical: 14%
- storage: 14%

Created: Aug-17-09 2:56 PM
Fuel Cell Vehicle Maintenance by System

Fuel Cell Vehicle Maintenance Events and Labor Hours

Fuel Cell Vehicle Events (11075)
- Vehicle (non-powertrain): 33%
- Fuel Cell System: 58%
- Powertrain: 5%
- Battery: 3%

Fuel Cell Vehicle Labor (11849 hours)
- Vehicle (non-powertrain): 19%
- Fuel Cell System: 49%
- Powertrain: 7%
- Battery: 4%

Fuel Cell System Events (3704)
- Thermal Management: 10%
- Air System: 4%
- Controls, Electronics, Sensors: 13%
- Fuel System: 24%
- Fuel Cell Stack: 11%
- Other: 38%

Fuel Cell System Labor (5856 hours)
- Thermal Management: 27%
- Air System: 21%
- Controls, Electronics, Sensors: 12%
- Fuel System: 28%
- Fuel Cell Stack: 11%
- Other: < 1%
Safety Reports – Vehicles

Safety Reports - Vehicle Operation

- Tank Scratch
- Traffic Accident
- H2 Leak - During Fueling
- H2 Alarm - Fuel System
- H2 Alarm - Passenger Compartment

Number of Reports

Created: Aug-10-09 3:08 PM
Safety Reports – Infrastructure

An INCIDENT is an event that results in:
- a lost time accident and/or injury to personnel
- damage/unplanned downtime for project equipment, facilities or property
- impact to the public or environment
- any hydrogen release that unintentionally ignites or is sufficient to sustain a flame if ignited
- release of any volatile, hydrogen containing compound (other than the hydrocarbons used as common fuels)

A NEAR-MISS is:
- an event that under slightly different circumstances could have become an incident
- unplanned H2 release insufficient to sustain a flame
Fuel Cell System Efficiency

Even with improved Gen 2 durability and freeze capability, FC system efficiency stays high.

<table>
<thead>
<tr>
<th></th>
<th>Eff. at 25% Pwr</th>
<th>Eff. at 100% Pwr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen 1</td>
<td>51 - 58%</td>
<td>30 - 54%</td>
</tr>
<tr>
<td>Gen 2</td>
<td>53 - 59%</td>
<td>42 - 53%</td>
</tr>
</tbody>
</table>

1 Gross stack power minus fuel cell system auxiliaries, per DRAFT SAE J2615. Excludes power electronics and electric drive.
2 Ratio of DC output energy to the lower heating value of the input fuel (hydrogen).
3 Individual test data linearly interpolated at 5, 10, 15, 25, 50, 75, and 100% of max net power. Values at high power linearly extrapolated due to steady state dynamometer cooling limitations.
Gen 1 and Gen 2 Stack Operating Hours and Projected Time to 10% Voltage Drop

DOE Learning Demonstration Fuel Cell Stack Durability:
Based on Data Through 2009 Q2

<table>
<thead>
<tr>
<th>Time (Hours)</th>
<th>Max Hrs Accumulated (1)(2)</th>
<th>Avg Hrs Accumulated (1)(3)</th>
<th>Projection to 10% Voltage Degradation (4)(5)(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen 1</td>
<td>2006 Target</td>
<td>2009 Target</td>
<td>Gen 2 projections are early but encouraging</td>
</tr>
<tr>
<td>Gen 2</td>
<td>2006 Target</td>
<td>2009 Target</td>
<td>Some Gen 1 FC stacks have demonstrated >2000 hours without repair</td>
</tr>
</tbody>
</table>

(1) Range bars created using one data point for each OEM. Some stacks have accumulated hours beyond 10% voltage degradation.
(2) Range (highest and lowest) of the maximum operating hours accumulated to-date of any OEM's individual stack in "real-world" operation.
(3) Range (highest and lowest) of the average operating hours accumulated to-date of all stacks in each OEM's fleet.
(4) Projection using on-road data -- degradation calculated at high stack current. This criterion is used for assessing progress against DOE targets, may differ from OEM's end-of-life criterion, and does not address "catastrophic" failure modes, such as membrane failure.
(5) Using one nominal projection per OEM. "Max Projection" = highest nominal projection, "Avg Projection" = average nominal projection.
(6) The shaded projection bars represents an engineering judgment of the uncertainty on the "Avg Projection" due to data and methodology limitations.
(6) Projection method was modified beginning with 2009 Q2 data, includes an upper projection limit based on demonstrated op hours.

Some Gen 1 FC stacks have demonstrated >2000 hours without repair.
Gen 2 projections are early but encouraging.
Projected Hours to OEM Low Power Operation Limit

Durability: Projected Hours to Low Fuel Cell Power Limit

- **Gen1 (> 200 operation hrs)**
- **Gen1 (< 200 operation hrs)**
- **Gen2 (> 200 operation hrs)**
- **Gen2 (< 200 operation hrs)**

Projections based on OEM power limits will improve with more hours.

- 27% Gen1 > 2000 projected hrs
- 9% Gen2 > 2000 projected hrs

1. Low fuel cell power limit is dependent on the fuel cell vehicle system and is unique to each company in this Learning Demonstration.
2. Acceptable low vehicle performance limit will be determined by retail customer expectations.
3. Power projection method based on the voltage degradation techniques, but uses max fuel cell power instead of voltage at a specific high current.
4. Stacks with less than 200 operation hours are in separate groups because the projection is based on operation data and with operation hours greater than 200 the degradation rate tends to flatten out.
On-Site Hydrogen Production Efficiency

Hydrogen Production Conversion Efficiency

Production conversion efficiency is defined as the energy of the hydrogen out of the process (on an LHV basis) divided by the sum of the energy into the production process from the feedstock and all other energy as needed. Conversion efficiency does not include energy used for compression, storage, and dispensing.

The efficiency probability distribution represents the range and likelihood of hydrogen production conversion efficiency based on monthly conversion efficiency data from the Learning Demonstration.

Created: Sep-01-09 10:32 AM

1. Well-to-Wheels greenhouse gas emissions based on DOE's GREET model, version 1.8b. Analysis uses default GREET values except for FCV fuel economy, hydrogen production conversion efficiency, and electricity grid mix. Fuel economy values are the Gen 1 and Gen 2 window-sticker fuel economy data for all teams (as used in CDP #6); conversion efficiency values are the production efficiency data used in CDP #13.

2. Baseline conventional passenger car and light duty truck GHG emissions are determined by GREET 1.8b, based on the EPA window-sticker fuel economy of a conventional gasoline mid-size passenger car and mid-size SUV, respectively. The Learning Demonstration fleet includes both passenger cars and SUVs.

3. The Well-to-Wheels GHG probability distribution represents the range and likelihood of GHG emissions resulting from the hydrogen FCV fleet based on window-sticker fuel economy data and monthly conversion efficiency data from the Learning Demonstration.

4. On-site electrolysis GHG emissions are based on the average mix of electricity production used by the Learning Demonstration production sites, which includes both grid-based electricity and renewable on-site solar electricity. GHG emissions associated with on-site production of hydrogen from electrolysis are highly dependent on electricity source. GHG emissions from a 100% renewable electricity mix would be zero, as shown. If electricity were supplied from the U.S. average grid mix, average GHG emissions would be 1245 g/mile.

Created: Sep-08-09 4:21 PM
Summary

• Learning Demo evaluation is ~80% complete
 – 140 vehicles and 20 stations deployed
 – 2.3 million miles traveled, 115,000 kg H₂ produced or dispensed
 – 346,000 individual vehicle trips analyzed
 – FC durability and vehicle range targets met with Gen 2 vehicles
 – Project to continue into 2010

• Emphasis from project has been on providing maximum value from the data collected during project
 – 72 results have been published, updates every 6 months
 – Current results are always available on our web page

• Vehicle/Station Status
 • 2nd generation vehicles have now been on road for >1 year
 • Station deployment nearing completion; some early stations retired

• Similar Evaluations Now Underway at NREL for FC Forklifts, Backup Power, Prime Power
Questions and Discussion

All public Learning Demo and FC Bus Evaluation papers and presentations are available online at http://www.nrel.gov/hydrogen/proj_tech_validation.html

NREL’s Renewable H2 Station Opened in September and is Ready to Fuel Vehicles