PLUG-IN HYBRID ELECTRIC MEDIUM DUTY COMMERCIAL FLEET DEMONSTRATION AND EVALUATION

Principle Investigator: Matt Miyasato, Ph.D.
Presenter: Jeff Cox
South Coast Air Quality Management District
May 12, 2011

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Start – November 2009
- Finish – August 2013
- 30% Complete

Budget
Total project funding
- DOE - $45,443,325
- Contractor - $45,612,649

Barriers
- Component reliability
- Sub-system interfaces
- Engine integration
- Emissions system impacts
- System/vehicle validation
- Wide distribution of demonstration fleet vehicles
- Quick deployment timeline
- Lack of developed supply chain

Partners
- SCAQMD
- EPRI
- Eaton
- Altec
- SCE
- A123
- Azure Dynamics
Objectives

- Nationwide demonstration and evaluation of 280 medium-duty PHEVs
- Develop a near-production PHEV system for class 4 – 5 vehicles
- Develop production ready “smart charging” capability for the vehicle
- Build customer familiarity
- Quantify performance attributes and environmental impact
- Use project results for system development to optimize performance and reduce costs
Approach – F550 Utility Truck

Vehicle Design
- Eaton Plug-in Hybrid Drive System
- Ford 6.7L Diesel Engine
- A123 Lithium-Ion Battery (23kWh)
- Blended Regenerative Braking
- Engine Off at Zero Speed
- On-board Charger (7kW)
- Charging-Level 1 (120 Vac) and Level 2 (240 Vac)
- Electrified Accessories (Steering, Brakes, and HVAC)
- Export Power (5 kW, 120 Vac, 60 Hz)

Performance Specifications:
- ePTO operation (>5 Hours with Engine-Off)
- Up to 10 miles pure electric range (30 mph average)
- Charge time less than 3 hours with Level 2
- FMVSS compliant
F550 System Design
F550 Vehicle Calibration
F550 - Technical Accomplishments

Vehicle Modifications

- Eaton Hybrid Transmission
 - Park Pawl & 65 kW Motor
- Floor Pan Modification and Transmission Cover
- Manual Transmission Flywheel
- Transmission Cross member
F550 - Technical Accomplishments

Component Development

- Design of Power Electronics Carrier (PEC) is complete. The PEC houses:
 - 23 kWh Li-ion Battery
 - Traction Motor Inverter
 - 5 kW APG
 - Electric power steering/brake pump
 - Engine Gateway Module
 - Electric AC Compressor
 - 7 kW On-board Charger
- Component Supplier Selection Complete
- All PHEV components will be PPAP’d
- Material order has been placed for first 50 vehicles
F550 - Technical Accomplishments

F550 prototype vehicles have been built to:

- Validate hardware architecture and system design
- Optimize vehicle calibration strategy to:
 - Reduce Fuel Consumption
 - Maximize Grid Energy Usage
 - Vehicle Performance
 - Engine-off Operation (stationary and driving)
 - Reliability
 - Safety
Approach – E450 Shuttle Bus

- **Vehicle Design:**
 - Azure Hybrid System
 - Ford 5.4L Gasoline Engine
 - Lithium-Ion Battery (14 kWh)
 - Blended Regenerative Braking
 - Engine Off at Zero Speed
 - On-board Charger (3.3 kW)
 - Charging-Level 1 (120 Vac) and Level 2 (240 Vac)
 - Electrified Accessories (Steering, Brakes, and HVAC)

- **Performance Specifications:**
 - Up to 20 miles charge depleting range
 - Charge time less than 6 hours with Level 2
 - FMVSSS compliant
E450 System Design

Advancements to AZD Industry Leading V8 Belt Starter Generator - integrated electric Clutch
- motor can spin auxiliaries with Engine off

JCS Li ion PHEV Battery Pack (14 kWh)

65,000 BTU Electric A/C compressor – AZD Force Drive controlled

Advancements to AZD Force Drive inverters – improved performance, manufacturability improvements

Ford 5.4 L Gasoline Engine

Charger 3.3 kW capable of Level 1 or Level 2 Charging
E450 Blended EV Strategy

Top graph is vehicle speed (km/h) on UDDS cycle in lab; bottom graph is engine speed (whenever non-zero, engine is running).
E450 - Technical Accomplishments

- Completed design of the PHEV battery pack
 - Liquid Cooled
 - 346 V nominal
 - 14 kWh
- Integrated larger battery pack within Azure’s E450 Balance Hybrid System
Collaborations/Partnerships

- SCAQMD – Prime Recipient
- California Energy Commission – Funding Partner
- EPRI – Program Management and Fleet Coordinator
- Eaton – Hybrid System Developer
- Azure Dynamics – Hybrid System Developer
- Altec – Body Builder & PHEV Integrator
- So Cal Edison – Battery and Vehicle Testing
- A123 Systems – Battery Supplier
- Ford – Chassis Supplier & Integration Support
Future Work

- **Fiscal Year 2011**
 - Complete system and calibration validation testing
 - Deploy fleet of 280 medium-duty PHEV’s
 - Install cellular based data acquisition systems and set-up download servers to acquire in-use performance data
 - Install 240V vehicle charging infrastructure

- **After 2011**
 - Evaluate and analyze the vehicle operation in the field
 - Conduct laboratory emissions and fuel economy tests
 - Conduct battery cycle life testing
 - Conduct user surveys
 - System performance optimization
 - System cost reduction through design optimization
The project will:
- Quantify the attributes of a medium-duty PHEV for shuttle bus and utility truck vocations in terms of:
 - Criteria pollutant emissions
 - Greenhouse gas reductions
 - Fossil fuel displacement
- Further optimize the efficiency of the system based on data that is collected in the field
- Pathway to commercialization for a medium-duty PHEV system

The design specifications are complete to enable an EV capable medium-duty PHEV that can operate electrically at a job site and/or drive electrically.

Fleet participants have been engaged to enable a nationwide demonstration program of 280 vehicles

Manufacturing has been kicked-off to initiate the build the 280 vehicle fleet