

Solid Oxide Fuel Cells (SOFC) as Military APU Replacements

Thomas L. Reitz, Ph.D.

Chief, Thermal and Electrochemical Branch Energy/Power/Thermal Division Propulsion Directorate Air Force Research Laboratory

Cleared For Public For Public Release: 88ABW-2010-0196

- DOE and others are developing SOFCs emphasizing core technology, system reliability, and affordability
 - Goals Long life (40,000 hrs); Low cost (< \$400/kW)
- Gains can be leveraged to address specific needs for mobile and DoD applications
- Key challenges
 - Increased power densities
 - System > 200 W/kg
 - Military logistic fuels
 - Sulfur, complex chemistries
 - Limited life, emphasis on high performance
 - 1000's of hours versus 10,000's of hours

DOE Stationary System

USAF SOFC Systems for Aviation Applications

- Focus on smaller, sub-units (<10kW)
- Cooperative Army/USAF Activities
 - Air Force UAV, Army Silent Watch
- Technical Challenges
 - Compact system integration
 - JP-8 utility
- Near Term Demo on UAS (FY11)
 - ~26% Efficient, S-8 Fuel
- Future System Development
 - 50-hr SOFC Hybrid Power System
 - >35% Efficient, >200 W/kg
- Other Goals
 - Autonomous System Operation

- High-bypass turbines are both efficient and compact
- SOFC-based APUs have many challenges to overcome

Military APUs Have Different Requirements

 Similar APUs to commercial but lower cooling requirement reduces size

Aircraft	Manufacturer	Power Output (kW)	Size (lb)
C-130	HW (85)		
C-5	HS (APS-3400) X 2	125	314
C-17	HW (331-250)	90	

- Location is different
- Primary functions include engine restart, HVAC on ground, electric and pneumatic power, cargo door operations

• Power at altitude power from 4 @ 90 kVA Generators

Impact of Technology Improvements

- Example calculation for long-endurance SOFC power system
 - Fixed wt (Fuel + Power System)
- Largest initial endurance gains derived from power density increases
 - 100 W/kg to 400-500 W/kg
- Thermal efficiency impact greater at larger power densities
 - > 200 W/kg

Key Technical Challenges

JP-8 Operability

- Must tolerate up to 3000ppm Sulfur
- Hetero-atom content, complex chemistry
- Compact Packaging
 - Extremely high power density required (>1000W/kg)
- Operational Characteristics
 - High efficiency cooling/cathode air at 40kft
- Lifetimes
 - MTBF > 10000 hrs under vibration, thermal shock, etc
- Other issues
 - Rapid Start
 - Load Following

World-wide JP-8 Sulfur Content

- DOE/DOD partnership is strong
- APUs are pretty good...but there may be a pony in there
- AFRL has interest in this area
 - Logistic-based fuel cell system for ultra-long UAS
 - Both In-house and contractual efforts supporting development of high power density, logistic-fuel tolerant systems
- Key challenges exist which must be overcome

Thanks!