Modeling of high efficiency clean combustion engines

Salvador Aceves, Mark Havstad, Nick Killingsworth, Matt McNenly, Tom Piggott, Ray Smith
Lawrence Livermore National Laboratory
JY Chen, Robert Dibble, UC Berkeley
Randy Hessel, University of Wisconsin

May 19, 2009

Project ID # ace_12_aceves

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Start date: October 2005
- End date: September 2012
- Percent complete: 60%

Budget
- Total project funding
 - DOE share: $4M
- FY09 Funding: $1M
- FY08 Funding: $1M

Barriers
- Inadequate understanding of the fundamentals of LTC
- Inadequate understanding of the fundamentals of mixed mode operation

Partners
- Sandia Livermore
- Oak Ridge
- Los Alamos
- International
- UC Berkeley
- University of Wisconsin
- University of Michigan
- Chalmers University
- FACE working group
- SAE
Objective: Enhance understanding of clean and efficient engine operation through detailed numerical modeling

Chemical kinetics

Fluid mechanics
Milestones: We have developed and experimentally validated detailed engine modeling tools

- **Demonstrated accurate prediction of partially stratified combustion** (January 2009)
- **Developed improved surrogate chemical kinetic model for gasoline** (January 2009)
- **Analyzed SI-HCCI transition in ORNL experiment** (March 2009)
- **Calculated PCCI combustion with an artificial neural network-based chemical kinetic model** (March 2009)
Approach: collaborate with industry, academia and national labs in the development of analysis tools leading to clean, efficient engines

- Improved Chemkin multizone numerics
- Analysis of HCCI-SI transition
- Gasoline surrogate mechanism
- PCCI modeling
Accomplishments: The Newton-Raphson method efficiently solves nonlinear equations

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \]
When solving a system of differential equations,

\[
\frac{\dot{y}_i - y_i}{\Delta t} = f_i(\hat{y}_1, \ldots, \hat{y}_N) \quad \text{where } y_i = y_i(t) \text{ and } \hat{y}_i = y_i(t + \Delta t)
\]

the Jacobian matrix \(J = \frac{\partial f_i}{\partial y_j} \) plays the role of the derivative.

\[
(I - \Delta t \frac{\partial f_i}{\partial y_j}) (\hat{y}_j^{k+1} - \hat{y}_j^k) = -\hat{y}_i^k + y_i + \Delta t f_i(\hat{y}_1^k, \ldots, \hat{y}_N^k)
\]

\[
\frac{\partial f_i}{\partial y_j} = \begin{pmatrix}
\frac{\partial f_1}{\partial y_1} & \cdots & \frac{\partial f_1}{\partial y_N} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_N}{\partial y_1} & \cdots & \frac{\partial f_N}{\partial y_N}
\end{pmatrix}
\]
Processing the Jacobian is the most computationally expensive part of CHEMKIN-Multizone

- 94% of the total computational cost is spent generating the Jacobian and solving the associated linear system.

![Computational breakdown of the CHEMKIN-Multizone model](image)

- 32M calls to the CHEMKIN species production rate
- 4400 Gaussian eliminations for 1300 x 1300 system
Chemkin multizone produces a block-diagonal Jacobian. Can we take advantage for reduced computational time?
New procedure: use LLNL’s ODE integrator with an iterative matrix solver (DLSODPK)

- Use LLNL’s iterative solver DLSODPK along with a preconditioner matrix P
 $$P^{-1}Ax = P^{-1}b$$
- Here P is the Jacobian of a simplified CHEMKIN-multizone model that yields a block diagonal matrix (neglecting interaction between zones)
The new DLSODPK scheme accelerates computations enabling detailed multizone kinetics on desktop PCs.

Computational breakdown of the CHEMKIN - Multizone model:

- 17x fewer calls to CHEMKIN species production rate
- Total Gaussian elimination cost is +400x smaller

60x speedup for 20 zones; 6 minutes (6 hours) with 63 species
250x speedup for 40 zones; 24 minutes (100 hours) 63 species
We are analyzing ORNL results for stability and emissions during SI-HCCI transition due to increased residual gas fraction.
1-dimensional chemical kinetic model accurately matches pressure traces for motored, SI and HCCI cases

- Spark-ignited
- HCCI (EGR=74.7%)
ORNL Test data for SI to HCCI transition: heat release patterns vary with residual gas fraction

Spark-ignited (EGR~10%) Increasing EGR

HCCI (EGR~60%)
LLNL Simulation results for SI to HCCI transition: heat release patterns vary with residual gas fraction

Spark-ignited (EGR~10%) Increasing EGR

HCCI (EGR~60%)
HCCI is more than a promising engine operating regime. HCCI is also an excellent platform for developing & testing high fidelity chemical kinetic models.

- n-heptane
- methylcyclohexane
- toluene
- iso-octane
- 1-pentene

Detailed kinetics of gasoline surrogates

High fidelity engine models
Gasoline surrogate model accurately predicts ignition time as a function of equivalence ratio.
But it does not properly replicate ignition time as a function of intake pressure
Analysis of pressure sensitivity of low temperature reaction steps may offer guidance toward improving quality of agreement.
Increasing the reactivity of the radical recombination reaction $R + O_2 \rightarrow RO_2$ matches experimental results up to ~1.7 bar intake.
We obtain improved agreement by reducing activation energy of chain branching reactions as a function of pressure.
We are analyzing three consecutive cycles of the Sandia automotive PCCI engine (Steeper)

Sandia Automotive HCCI Engine
operated by Dick Steeper
PHI = 0.293
1200 RPM

Visualized species and what is represented:
CO: incomplete combustion
Hi concentration
Low concentration

CA = -375

CFD by:
Randy Hessel
UW-Madison;
Salvador Aceves and
Dan Flowers, LLNL
The Sandia engine runs in PCCI mode with dual injection: one injection during NVO and a main injection.

NVO = 150 crank deg.
Fired case

Injections:
- NVO
- Main

150 ca deg.
KIVA3V-MZ-MPI shows promise for accurately predicting direct injected PCCI

NVO150 Fired case

- measured
- calc, cycle2

Crank angle, deg. atdc

Pressure, MPa

exp. 80227ai
Future work: we are preparing our codes for public release

Chemkin multizone
(1-D flame propagation & autoignition)

KIVA-multizone
(HCCI, PCCI)

KIVA-sequential multizone
(HCCI)

KIVA-artificial neural network
(HCCI, PCCI)
Future work: extend applicability and computational efficiency of analysis tools

HCCI-based chemical kinetic mechanism testing and tuning

Full PCCI validation
KIVA-MZ, KIVA-ANN

Enable 3-D fluid mechanics and detailed kinetics in today’s desktop PCs
Summary: we are enhancing our analysis capabilities and improving computational performance

- 60x-250x Improved numerics
- HCCI-SI transition modeling
- Gasoline surrogate
- Partially stratified combustion

Graphs and data visualizations illustrating the improvements in computation and simulations.