Low-Temperature Diesel Combustion Cross-Cut Research

Project ID: ace_05_pickett

Lyle M. Pickett
Sandia National Laboratories

FY 2009 DOE Vehicle Technologies Program Annual Merit Review
ACE05, Salon E&F, 11:00 – 11:30 AM, Tuesday, May 19, 2009

Sponsor: DOE Office of Vehicle Technologies
Program Manager: Gurpreet Singh

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Overview

Timeline

- Project provides fundamental research that supports DOE/industry advanced engine development projects.
- Project directions and continuation are evaluated annually.

Budget

- Project funded by DOE/VT: FY08 - $580K
 - FY09 - $570K

Barriers

- Engine efficiency and emissions
 - Sources of unburned hydrocarbons and CO for LTC combustion
- Low-load limitations for LTC
- CFD model improvement for engine design/optimization

Partners

- 15 Industry partners in the Advanced Engine Combustion MOU
- Participants in the Engine Combustion Network
 - Experimental and modeling
- Project lead: Sandia
 - Lyle Pickett (PI)
Overall Approach

• Facility dedicated to fundamental combustion research for both heavy-duty and light-duty engines (cross-cut research).
 – Well-defined charge-gas conditions
 • Pressure, temperature, EGR level
 – Well-defined injector parameters
 • Injection pressure, fuel, multi-injections

Experiments in CV
• Well-defined boundary conditions
• Quantitative diagnostics at engine conditions
• Improved physical understanding

Computer models
• Sum of many sub-models
• Adds knowledge about things that are not “measurable”
• Parametric design optimization
• Saves time and cost over “hardware” iteration

High-Efficiency, Low-Emissions Engine
Objectives/Milestones

• Determine the factors that cause liquid wall impingement at early-injection LTC conditions (FY07-FY09).
 – Addresses an important source of UHC, oil dilution, inefficiency.
 – FY09 (1): Root causes and limitations for early-injection liquid penetration explained and modeled.

• Characterize liquid vaporization and flame/ignition propagation after the end of injection (FY08-FY09).
 – UHC may remain near the injector when using LTC combustion.
 – FY09 (2): Investigate the controlling parameters that extinguish or permit combustion near the injector after the end of injection.

• Aid the development of computational models for engine design and optimization (ongoing).
 – Experimental and modeling collaboration through the Engine Combustion Network: http://www.ca.sandia.gov/ECN
 – FY09 (3): Develop a baseline high-temperature, high-pressure condition, attain injector set for experimentation by multiple laboratories.
(1) Characterize liquid wall impingement at early-injection LTC conditions.

- Provide quantitative measurement of liquid penetration using optical techniques.
- Assess the effects of
 - temperature
 - boost (density)
 - fuel
 - nozzle size
 - injection pressure
- Prevention by using short and multiple injections.
- Liquid penetration modeled using mixing-limited vaporization (Siebers 1999).
(1) High-speed imaging of liquid and vapor boundaries of penetrating spray

Chamber dimensions allow extensive visualization before wall impingement.

-40 CAD
$T_a = 600$ K
$d' = 0.108$ mm
diesel

Dur. Inj. 0.2 ms
Mass Inj. 0.7 mg

(click to play movie)
Past research focused on TDC, steady conditions, rather than transient, early-injection.

- Liquid penetration follows vapor until some critical distance (max. liquid length).
- Steady liquid length identified at early-injection conditions.
 - Much longer than TDC liquid length.
 - Liquid wall impingement likely.

Siebers 1999

<table>
<thead>
<tr>
<th>Ambient temperature T_a</th>
<th>Ambient density ρ_a</th>
<th>Orifice diameter d</th>
<th>Injection pressure P_{inj}</th>
<th>Fuel 90% boiling point T_{90}</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>

Liq. length: $↓$
Advanced injection timing increases liquid penetration.

Wall impingement (100 mm) at -40 CAD

- $d = 0.108$ mm
- 110 MPa
- #2 diesel

\cdot Time ASI to attain steady liquid length, t_{ss}, increases.
Liquid length model shows ability to capture trends wrt to ambient conditions, fuel, nozzle.

Mixing fuel and ambient to saturated mixture state. Spray spreading angle, fuel/ambient thermodynamic properties used as inputs (Siebers 1999).

- Use of low-boiling-point fuel can significantly lower liquid penetration.
 - T₉₀ is 75 °C less for kerosene than diesel.
- Reducing nozzle orifice size will reduce liquid penetration.
- Low-boiling-point fuel more effective at reducing liquid penetration than use of a small nozzle orifice.
 - Liquid length does not increase as sharply for kerosene compared to diesel when advancing injection.
 - Confirmed by both experiments and modeling results.
- Model overpredicts liquid length at earlier CAD.
Why does injection advancement cause less liquid length increase for kerosene over diesel?

- Mixture thermodynamics show:
 - Lower saturated temperature T_{sat} for kerosene.
 - Higher $(F/A)_{sat}$ for kerosene.

- With earlier CAD, $(F/A)_{sat, kero.}$ progressively increases.
 - Higher saturated F/A ratio \rightarrow shorter liquid length

- Kerosene more resistant to wall-wetting with early injection, even compared to diesel and small nozzle orifice diameter.

Conditions

<table>
<thead>
<tr>
<th>Ambient</th>
<th>Fuel</th>
<th>Diesel</th>
<th>Kerosene</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 K</td>
<td>373 K</td>
<td>$T_{sat} = 508$ K</td>
<td>$T_{sat} = 474$ K</td>
</tr>
<tr>
<td>5.2 kg/m³</td>
<td></td>
<td>$(F/A)_{sat} = 0.17$</td>
<td>$(F/A)_{sat} = 0.29$</td>
</tr>
</tbody>
</table>
Boost significantly lowers liquid penetration.

- Boost helps to reduce wall impingement when using early injection.
 - Spray penetration speed also reduced.
- Time to reach steady state t_{ss} depends upon conditions.
 - At early CAD, boost increases t_{ss}.
 - At later CAD, boost decreases t_{ss}.
Why does t_{ss} increase or decrease with boost at various injection timings?

Use model jet penetration (Naber and Siebers 1996) and liquid length prediction (Siebers 1999).

- Liquid length L depends upon density and $(F/A)_{sat}$.
- L decreases with increasing density.

\[t_{ss} \propto \frac{L}{U_f} \cdot \frac{1}{(F/A)_{sat}} \]

- $(F/A)_{sat}$ depends only on mixture thermodynamic properties.
- $(F/A)_{sat}$ decreases with increasing pressure (boiling point T increases).

- The tradeoff between (1) and (2) determines whether the time to attain a steady liquid length will increase or decrease.
Reducing injection duration/mass produces injections with shorter liquid penetration.

- The injection duration must be shorter than t_{ss} to have maximum liquid penetration less than the quasi-steady liquid length.
Injection duration must be less than \(\frac{1}{2} \) of \(t_{ss} \) to reduce the maximum liquid penetration.

- Increased ambient entrainment must propagate downstream to the jet head to reduce F/A and vaporize liquid fuel.
- Musculus’ jet model shows that the entrainment wave reaches the jet head at 2 times the injection duration.
Relevance of early-injection liquid penetration research to LTC.

- Experiments provide data on the steady liquid length and time of penetration that is critical for spray model validation.
- Knowledge about the critical injection duration to limit liquid penetration ($\frac{1}{2}$ of t_{ss}) allows injection rate control optimization.
 - Multiple injections limit the liquid penetration and increase the injected mass.
 - Provides a pathway to increase engine load for LTC.
- New understanding about low-boiling-point fuels and their resistance to wall-wetting (superior to diesel+small nozzles) allows further optimization of LTC using alternative fuels.
- Well-controlled environment (pressure and temperature) reveals the fundamental causes of liquid penetration.
 - Needed to understand spray events in an unsteady engine environment.
- Findings provide comprehensive understanding needed to minimize liquid wall impingement and UHC in LTC engines.
(2) Accomplishment: Flame extinction after EOI affected by fuel/ambient mixture.

- Dataset shows lack of flashback for lower equivalence ratio conditions when $\phi(H) < 3$.
- Flashback determines whether or not near nozzle region produces UHC.
(3) Accomplishment: Development of ECN is accelerating model development.

Successful LTC Engines

Experimental Data
- Soot volume fraction
- Mixture fraction
- Rate of injection
- Ignition Delay
- Heat-release
- Fuel effects
- Temperature
- Pressure
- Inject. Pressure

Engine Combustion Network
http://www.ca.sandia.gov/ECN

Improved, predictive models
- SAE 2008-01-1331 Vishwanathan, Reitz
 University of Wisconsin
- SAE 2008-01-0968 Campbell, Hardy, Gosman
 Imperial College
- SAE 2008-01-0961 Karrholm, Tao, Nordin
 Chalmers University
- SAE 2008-01-0954 D’Errico, Ettorre, Lucchini
 Politecnico di Milano

(Multiple modeling groups using our spray data!)

Better physical understanding of LTC.
- Liquid penetration
- Vapor penetration
- Lift-off length
- EGR effects
- Multi-Injection
- Nozzle size

Experimental Data
- Soot distribution
- Liquid penetration
- Vapor penetration
- Lift-off length
- EGR effects
- Multi-Injection
- Nozzle size
- Fuel effects
- Temperature
- Pressure
- Inject. Pressure

Engine Combustion Network
http://www.ca.sandia.gov/ECN

Improved, predictive models
- SAE 2008-01-1331 Vishwanathan, Reitz
 University of Wisconsin
- SAE 2008-01-0968 Campbell, Hardy, Gosman
 Imperial College
- SAE 2008-01-0961 Karrholm, Tao, Nordin
 Chalmers University
- SAE 2008-01-0954 D’Errico, Ettorre, Lucchini
 Politecnico di Milano

(Multiple modeling groups using our spray data!)
Future work: Experimental collaboration in the ECN

- Multiple groups to work on the same baseline experimental condition: “Spray A”
 - Repeat experiments at multiple facilities.
 - Accurate models require accurate measurements/b.c.

- Bosch to donate “identical” injectors/nozzles to Sandia.
 - Sandia will distribute to other groups for voluntary experimentation at this condition.

- Acceleration of LTC model development.

Spray A
Ambient: 900 K, 60 bar (22.8 kg/m³)
Injector: 1500 bar, 0.090 mm nozzle, KS1.5/0.86

- Michigan Tech. Univ.
 - Vessel temperature composition

- Argonne (x-ray source)
 - Internal needle movement
 - Near-nozzle liquid volume

- IFP
 - Spray velocity

- CMT
 - Rate of injection
 - Droplet diameter

- Meiji Univ.
 - Soot formation

- Sandia
 - Liquid and vapor mixing
 - Combustion diagnostics
Future work (continued)

- Fundamental study of liquid wall impingement at DPF regeneration conditions (post injection).
 - Oil dilution and increased fuel consumption are problematic!
 - Combustion vessel ideal to investigate high-temperature, low-density conditions typical of post-injection.

- Lift-off (UHC and soot) effects with jet-jet interaction.
 - Addresses the gap in understanding between single-spray combustion and that using a multi-hole, practical fuel injector.

- Mixing measurements of Spray A condition.
 - Past mixing dataset with older injector has proven invaluable for spray and CFD model validation.
 - Mixing measurements also performed as a function of ambient gas density. Needed to quantify “spreading angle” in vaporizing spray environment.

- Velocity measurements of combustion vessel
 - Improved boundary condition information needed for CFD model development.
Presentation Summary

• Project is relevant to the development of high-efficiency, low-emission engines.
 – Observations of combustion in controlled environment lead to improved understanding/models for engine development.

• FY09 approach addresses critical LTC needs.
 – Measurements and new understanding for spray liquid-phase transients for early-injection LTC where wall-wetting is problematic.
 – Factors that influence liquid vaporization and flame flashback after the end of injection.

• Collaboration expanded to provide greatest impact (MOU, Engine Combustion Network)

• Future plans will continue effort
 – Post-injection liquid wall impingement.
 – Lift-off (UHC and soot) with jet-jet interaction.
 – “Spray A” characterization for the ECN.