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Hydrogen Embrittlement:  Long History

M.L. Cailletet (1868) in Comptes Rendus, 68, 847-850

W. H. Johnson (1875) On some remarkable changes 
produced in iron and steels by the action of hydrogen acids. 
Proc. R. Soc. 23, 168-175.

D. E. Hughes (1880) Note on some effects produced by the 
immersion of steel and iron wires in acidulated water, 
Scientific American Supplement, Vol. X, No 237, pp. 3778-
3779.

Literature is voluminous
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Hydrogen Embrittlement: Definition

Material degradation caused by the presence of hydrogen 
under load.  It is manifested in

Strain hardening rate
Tensile strength
Reduction in area
Fracture toughness
Elongation to failure
Crack propagation rate

Degraded material often fail prematurely and sometimes 
catastrophically after many years of service

Degradation is influenced by 
Microstructure and operating conditions
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Hydrogen-Induced Crack Propagation in IN903
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Deformation band

hole

Direction 
of crack 
advance

Crack Propagation in IN 903 Due to Hydrogen
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Hydrogen Embrittlement Mechanisms

Several candidate mechanisms have evolved each of which is 
supported by a set of experimental observations and strong 
personal views

Viable mechanisms of embrittlement
Stress induced hydride formation and cleavage

Metals with stable hydrides (Group Vb metals, Ti, Mg, Zr and their 
alloys)
Supported by experimental observations

Hydrogen enhanced localized plasticity (HELP)
Increased dislocation mobility, failure by plastic deformation 
mechanisms
Supported by experimental observations

Hydrogen induced decohesion
Direct evidence is lacking
Supported by First Principles Calculations (DFT)

Degradation is often due to the synergistic action of mechanisms
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Hydrogen Enhanced Localized Plasticity  
(HELP)

Failure is by localized shear processes occurring along slip 
planes:  shear localization

Transgranular fracture surfaces are highly deformed despite the 
fact macroscopic ductility is reduced  (localized shear processes 
occurring along slip planes)

Intergranular fracture occurs by localized ductility in the region 
adjacent to the grain boundaries

Applicable to all systems
Non-hydride forming systems (Fe, Ni, Al, 304, 310, 316 stainless steel, 
Ti3Al, Ni3Al)
Hydride forming systems α-Ti, β-Ti
Alloy and high purity systems
Bcc,fcc, hcp

Underlying principle is the hydrogen-induced shielding of the 
Interactions between microstructural defects
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Features on Intergranular Surfaces of a 
0.28pct C Steel Fractured in Hydrogen

Decrease in the density and 
size of ductile features (tear 
ridges) as a function of crack 
length.

Observations such as these 
led Beachem to conclude 
that hydrogen impacts 
plastic processes.

C. D. Beachem, Met. Trans. 3,437, (1972)
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Slip Lines on Brittle Intergranular Facets

310s stainless steel, 5.3 at% H 310s stainless steel, 5.3 at% H

Ulmer and Altstetter,  in Hydrogen Effects on Materials Behavior Moody and Thompson, p. 421
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Instrumentation: Controlled Environment
Transmission Electron Microscope

JEOL 4000 Environmental 
cell TEM

Objective Lens Pole-piece
D. K. Dewald, T. C. Lee, J. A. Eades, I. M. Robertson and H. K. Birnbaum Review of Scientific Instruments, 62, 1438, 1991. 

Aperture
cones

Pumping 
port

Specimen
axisJEOL 4000 Controlled 

Environment  Transmission 
Electron Microscope

CELL
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Instrumentation: Stages and Samples

Single-tilt straining stage Double-tilt straining stage

Single-tilt, low T strainingSingle-tilt, high T straining

Double-tilt stage Double-tilt, high T stage
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Influence of Hydrogen on Dislocation Mobility 
(Fe under constant Load and Increasing H Pressure)
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Dislocation Motion in Fe due to Introduction 
of Hydrogen Gas 

14:60 14:77 18:50 18:90

20:7120:60 30:40 30:64

36:4136:16 38:41 41:21

Increasing hydrogen gas pressure
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Hydrogen Effect on Dislocation Mobility in Ti
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Hydrogen-Deformation Interactions

Solute hydrogen atoms interact with an applied stress field
Hydrogen-induced local volume dilatation (2cm3/mole in Fe)
Hydrogen-induced local elastic moduli changes (measurements 
in Nb)

Solute hydrogen diffuses through normal interstitial lattice 
sites (NILS) toward regions of lower chemical potential, i.e. 

Tensile hydrostatic stress
Softened elastic moduli
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Iso-concentration Contours of Normalized Hydrogen Concentration 
around two Edge Dislocations  in Niobium as the Separation 

Distance Between the Dislocations Decreases
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Effect of Hydrogen Atmospheres around the Two Dislocations:
Shear Stress on Dislocation 2 vs Separation along the Slip Plane

Hydrogen reduces the interaction between dislocations
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Reversibility of Hydrogen Effect on Adding 
and Removing Hydrogen

Pressure increase from 15 to 75 torr

Pressure increase from 15 to 75 torr

Pressure decrease from 75 to 9 torr

Material: high-purity Al

black - initial position
white - final position
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Influence of Hydrogen on Dislocation 
Separation in a Pile-up (310S Stainless Steel)
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Iso-concentration
countours of normalized  
hydrogen concentration 
around an edge 
dislocation and a carbon 
atom with a tetragonal 
axis [100]

Carbon atom is modeled 
as a stress center with a 
tetragonal distortion

Hydrogen-Carbon Interaction
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Shielding of Interaction Between Edge 
Dislocation and Carbon Atom
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Hydrogen Effect on Dislocation Cross Slip in Aluminum 
An Alternative Explanation of Increasing Slip Localization

Comparison images
Increasing hydrogen pressure       constant hydrogen pressure   decreasing hydrogen pressure.

Change in line 
direction in (c) 
indicates cross-slip 
process has 
initiated.

Cross-slip process 
halted due to 
hydrogen, (c) and 
(d). 

Cross slip process 
resumes as 
hydrogen pressure 
reduced  (f).

Cross-slip in progress. Cross-slip process halted. Cross slip process resumes
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HELP:  Conclusions

Hydrogen enhances the mobility of dislocations and 
decreases the separation distance between dislocations in 
a pile-up

Hydrogen restricts cross-slip by stabilizing edge character 
dislocations.

Hydrogen enhances crack propagation rates

Hydrogen reduces the stacking-fault energy of 310S 
stainless steel by 20%
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HELP and Hydrogen Embrittlement

5 110 sε − −>

0/ exp( / )BC C W KT=

T>473K

High temperatures
•No atmposphere
•No hydrogen effect

Ni is not embrittled

BKT W>

Low temperatures
or high strain rates

Atmosphere lags behind

•Both Ni and pure Fe 
hardened by hydrogen at 

•Ni is hardened by 
hydrogen at 

•Pure Fe is hardened at
200KT <

100KT <

Intermediate temperatures
or low strain rates
Atmosphere moves with 
dislocation
•Shielding            Embrittlement

Fe 77 400KT< <

6 1Ni 200 300K; 10 sT ε − −< < <

•At higher strain rates atmosphere
moves but lags behind      hardening

•Increasing the temperature
gives serrated yielding

473KT >



28

January 2005

Critical Issues for the HELP Mechanism

How does the hydrogen effect on the microscale affect the 
mechanical behavior on the macroscale?

How does hydrogen enhance slip localization?

What are the synergistic effects of other solutes on HELP 
type fracture, particularly at grain boundaries?

What is the actual mechanism by which the enhanced 
plasticity leads to fracture?

Localized microvoid coalescence (seen in situ TEM)?
Stroh crack due to compressed pile-ups?
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MODELING OF HELP

Connecting
the microscopic to the 

macroscopic
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Initially 
homogeneous 
deformation 
localizes into 
a band of 
intense shear

Initially 
homogeneous 
deformation 
localizes into 
a narrow neck

Modeling of Hydrogen-Induced Instabilities
in Plane Strain Tension

How does hydrogen affect these instabilities?

Important note

Shear band bifurcation or shear 
localization is a precursor to 
material failure.

Multiplicity of solutions
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Lattice hydrogen

Equilibrium theory

Hydrogen in Equilibrium with Local Stress 
and Plastic Strain

Dilatational strain
Flow stress reduction

ElastoplasticityProblem 
is 

fully coupled

Solution incremental in time (load)

Stress-Plastic strain

, 0L kkC Cσ 
 
 

Hydrogen trapped 
at dislocations

, p
T LC C ε 

 
 

L TC C+

0C

Plastic response assumptions:
• Material rate independent
• von Mises yielding
• Hardens isotropically
• H-induced softening
• H-induced lattice dilatation
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Condition for Shear Banding Bifurcation

Dependence of the critical    and 
tangent modulus      on the 

macroscopic strain for initial 
hydrogen concentrations of H/M = 

0.1, 0.3, 0.5
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Critical Strain for Shear Banding Bifurcation
in Plane-Strain Tension
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x2

x1

c0

c0 +∆c

u 2∆

l

/2l

s

s 0

x1

x2

c0

c0+ c0∆

Hydrogen Perturbation and Plastic Instability

Motivation: Hydrogen concentration at grain boundaries 
larger than concentration in the bulk of the grain
It has been estimated that in nickel at 253K there is a 70nm grain 
boundary zone in which                     .  In this zone high resolution TEM 
showed that fracture is a  highly localized ductile process

230zone bulkC C=
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Perturbation in H Concentration to Model 
Necking Bifurcation in Plane-Strain Tension

1.6000
1.5000
1.4000
1.3000
1.2000
1.1000
1.0000

0 20 40 60
0.0

0.5

1.0

1.5
normalized true stress
normalized force F2/(2 w)σ0

σ22/σ0

homogeneous case
c0=0.3 c0=0.3

c0=0.003∆
ε22, σ22, F2

c0+ c0∆c0

elastic unloading point

ε22=37.2ε0
b

1.0200
1.0167
1.0133
1.0100
1.0067
1.0033
1.0000

22 0/ 29.40ε ε = 22 0/ 42.92ε ε =

0 0.3 /c H M= 0 0 0.01c c∆ = Local flow stress depends
on the local hydrogen concentration

Load attains its maximum at 22 0 28.4ε ε =
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Hydrogen Effect on Necking Bifurcation in 
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bε
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Hydrogen reduces the macroscopic strain at which 
necking bifurcation commences

( )0 /c H M
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Hydrogen-Induced Decohesion

V,σ surface energy

σ cohesive

r

B = −∂ 2V ∂r2

H − ∂V ∂r

Vcohesive

Basic premise: hydrogen reduces 
the local bond strength which 
results in the maximum force 
per unit area required to 
separate two half solids being 
reduced.

Problem: magnitude of the 
reduction is not known, 
especially under dynamic 
fracture conditions.
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Hydrogen-Induced Decohesion

Experimental evidence
Cohesive energy:  Unaffected by H in NbH fracture energy 
compared to Nb
Surface energy: Ni+300ppm H has equal surface free energy to 
pure Ni
Cohesive stress (not measured)
Phonon frequencies and force constant:  Increased by H in Vb
metals
Bulk modulus:  Increased by H in Vb metals

Ab-initio calculations
Based on equilibrium fracture considerations hydrogen was 
found to be a grain boundary embrittler at Ni Sigma 5 (210) GB
Ideal fracture energy of Fe (110) decreases linearly with H 
coverage
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Hydrogen-Induced Fracture of beta-Titanium
as a Function of H Content
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In situ TEM Deformation of beta-Titanium
No New Hydrides at Crack Tip or Along Flanks

H/M=0.29
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Hydrogen-Induced Fracture of beta-Titanium

•No hydrides

•No HELP

•Sharp decrease in the fracture load 
with increasing hydrogen concentration
is consistent with a decohesion 
mechanism at the observed 
high H/M values

Jokl, Vitek, McMahon

cK

γHγ

H
cK

Ideal work of brittle fracture 7.5p

p

d dn n
γ γ

γ γ
= =

A small reduction in      brings about a dramatic
reduction of the plastic work      for fracture

γ
pγ
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Pipeline Steels

Hydrogen Embrittlement 
under 

High-pressure Gaseous
Hydrogen Environment
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Embrittlement Issues and Phenomenology
“Mild” steels with yield strength less than 700 MPa and large 
fracture toughness

Hydrogen pressure of at least 14 Mpa for cost equity with natural gas
Fatigue due to cyclic loading from in-line compressors 
There are no studies of embrittlement under these conditions

Safety design does not allow hoop stress to exceed 80% of yield 
stress (plastic collapse approach)

Cracks propagate before plastic collapse
Need for an approach based on Elastoplastic Fracture Mechanics

Residual stresses at girth and longitudinal welds
A weld cannot be efficiently protected by coatings
Little is known on the interaction between hydrogen solutes and 
elastoplasticity in the heat affected zone.  Especially in the presence 
of “hard spots” of martensite upon cooling

Stronger steels X-80 and X-100 recently suggested to reduce 
thickness and diameter are more susceptible to embrittlement
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Embrittlement Issues and Phenomenology
No difference in fracture response 
between burst and JIC testing (Robinson 
and Stoltz at A516-70 and A106-B)

Less cumbersome and less expensive 
JIC testing 
Hydrogen reduces JIC for crack initiation

Critical flaw size may be reduced from 
cm in natural gas to mm in high pressure 
hydrogen

Dramatic tenfold loss of crack growth 
resistance dJIC/da

Slope dJIC/da was found independent of 
hydrogen pressure
Hence supply of hydrogen is fast and not 
the rate limiting process
It is the plastic work that controls 
hydrogen degradation

Crack growth resistance dJIC/da impacts 
the stability of crack advance
Fracture behavior needs to be 
investigated

2

2

2

2

  Air
  3.45 MPa  H
  6.90 MPa  H
  20.7 MPa  H
  34.5 MPa  H

•

Robinson and Stoltz
Hydrogen Effects in Metals, 1981, pp-987-995

IC

2

J
in lb
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− 

 
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Embrittlement Issues and Phenomenology

Fractographic evidence suggests

Hydrogen-assisted transgranular fracture by void or 
microcrack initiation through decohesion at second phase 
particles (precipitate/inclusion) ahead of a crack or notch 
accompanied by shear localization (HELP) leading to the 
linking of the void/microcrack with the tip of crack

Intergranular cracking in welds by hydrogen-induced lowering 
of grain boundary or matrix/carbide interfacial cohesion in the 
HAZ

Our contention, which needs to be verified through experiment, is 
that embrittlement is a result of the synergistic action of the HELP 
and decohesion mechanisms
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Identify mechanisms of failure
Transgranular vs intergranular 
Role of inclusions and precipitates
Fatigue or static loading conditions

Explore for optimum microstructure
Tempered bainite or tempered martensite superior to pearlitic or 
pearlite-ferrite steels with speroidized in between
C:  increasing H content gives higher strength but higher H 
susceptibility
Mn : ferrite strengthener but reduces fracture toughness in H
Si: potent ferrite strengthener, neutral to H, problems with formability 
and weldability
Ti and Ni: alloying additions may help
Morphology and volume fraction of inclusions is controlled by S 
levels
Silicon steel rather than manganese with fine spheroidized
carbides may be a promising system to explore

Objectives
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Objectives (Cont’d)

Model the failure processes

Provide an insight to the critical flaw size and its stability

Device a fracture criterion with predictive capabilities for the
incubation period in subcritical crack growth and remnat life of the 
pipeline

Study the viability of using high strength steels
H incompatibilty increases with strength
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Objectives (Cont’d)

Mitigate hydrogen embrittlement by adding water vapor in the 
transported hydrogen

Water vapor is cheap
Water vapor is separated easily at final destination stations through 
cooling
Water vapor lowers crack growth rates (Robinson, Wei)

Reaction Fe+O       FeO is 108 faster than  Fe+H2O            FeO+H2

O (inhibitor of crack growth) and H (promoter of crack growth) 
compete for adsorption sites on the metal surface

At high transport pressures it is expected that the surface reactions 
will not be the controlling step.  Embrittlement depends on the 
transport of hydrogen
Effects of water vapor or O need to be carefully explored in particular 
at high pressures
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Objectives (Cont’d)

Understand the hydrogen or water vapor effects on interfacial 
cohesion by

studying the fracture of a thin film attached to a substrate or
through using “hour-glass radiused” uniaxial tension specimens
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OUTLINE OF AN EXAMPLE 
STUDY

Transgranular Cracking
Initiation - Propagation
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Modeling of Ductile Transgranular Fracture: Initiation

Hydrogen concentration 
set by the adsorption
surface reactions

X1

X2

Crack tip

Crack face

Crack tip

Ti =
KI
2πR

fij θ( )ni

n

Hydrogen flux to the 
fracture process zone

JH

R

C = C0

C = C0

JH = 0 X1

X2

Boundary concentration
of hydrogen

X2

X1

JH

JHr

MACRO

MESO

MICRO
Hydrogen mixed with 
water vapor

Surface reactions
that release 
hydrogen and oxygen

inclusion

Hydrogen
atmosphere

Zone of intense shear

•Decohesion at inclusion
•Void formation
•Linking with crack through shear banding
•Fracture mechanisms assisted by 
transient hydrogen adsorption and diffusion
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Modeling of Ductile Transgranular Fracture: Initiation

Address the role of significant parameters, such as
Material flow characteristics
Material trapping characteristics (type of traps, trap density, and binding energy)
Hydrostatic stress
Plastic strain
Hydrogen concentration
Loading rate
Loading in terms of the applied J-integral
Adsorption kinetics (ab-initio modeling)
Cohesive properties of the inclusion/matrix interface (ab initio)
Lattice cohesion in a direction perpendicular to the slip band (ab-initio)
Effect of water vapor or other crack growth inhibitors

Hydrogen boundary conditions on the crack face are set by the local 
adsorption kinetics

Assumption of first order kinetics leads to hydrogen coverage 

( ) ( ) 1
1h h o o o h hk p k p

−
 Γ Γ + Γ = + 
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Modeling of Ductile Transgranular Fracture: Propagation

X
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Modeling of Ductile Transgranular Fracture: Propagation
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Modeling of Ductile Transgranular Fracture: Propagation
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Modeling of Ductile Transgranular Fracture: Propagation
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SUMMARY AND CONCLUSIONS

Hydrogen Embrittlement
Direct experimental evidence and solid mechanics finite element 
calculations support the hydrogen enhanced localized plasticity
mechanism as a viable mechanism for hydrogen embrittlement

Indirect experimental evidence, thermodynamic considerations, 
and ab-initio calculations indicate that hydrogen-induced
decohesion can also be a viable mechanism of hydrogen 
embrittlement

Pipelines
It appears that do have the capability of assessing whether 
existing  structural material systems can be used for hydrogen 
transport

Advanced knowledge and technology are available for the design  
of new structural materials with hydrogen compatibility  


