Benchmark Reaction Mechanisms and Kinetics for Lean NOx Traps

Richard S. Larson
Sandia National Laboratories
Livermore, CA 94551-0969

DOE/OVT Annual Merit Review Meeting
Bethesda, MD
February 25, 2008

This presentation does not contain any proprietary or confidential information.
Purpose of Work

• Overall project goal: Obtain the fundamental surface chemistry knowledge needed for the design and optimal utilization of NOx trap catalysts, thereby helping to speed the widespread adoption of this technology.

• Current goal: Develop an elementary surface reaction mechanism, complete with values for the kinetic parameters, that accounts for the observed product distribution from a benchmark lean NOx trap (LNT) during both steady state and cyclical operation and under various conditions of temperature and inlet gas composition.
Barriers

- A cost-effective, durable exhaust aftertreatment system capable of meeting new EPA NOx regulations for lean-burn engines does not yet exist.
- “Development and optimization of catalyst-based aftertreatment systems are inhibited by the lack of understanding of catalyst fundamentals (e.g., surface chemistry …)” — 2006 ACEC Roadmap
- For greatest flexibility in engine operation, the temperature window for high NOx conversion efficiency in the LNT must be maximized.
- For greatest fuel efficiency, the reductant use during LNT regeneration (i.e., the fuel penalty) must be minimized.
Approach

- Assemble tentative reaction sets for both precious metal (regeneration) and oxide (storage) sites.
- Infer kinetic parameters by matching product distributions from both steady flow and cycling (storage/regeneration) experiments done at Oak Ridge National Lab (ORNL).
 - Use Chemkin plug flow codes to simulate flow of reactant mixture through a catalyst monolith channel.
 - Use Sandia APPSPACK code to find kinetic parameters by optimizing overall fit to experimental data.
 - Apply thermodynamic constraints during fitting procedure in order to ensure complete consistency.
Technical Accomplishments

• Basic performance measure: Ability to reproduce (simulate) observed outlet gas compositions for both steady flow and cycling experiments over the entire range of temperatures and inlet gas compositions.
• Steady flow experiments have been simulated successfully with the precious metal mechanism alone (10 gas species, 13 surface species, 28 reversible surface reactions).
• A journal paper describing this mechanism is in press.
• Cycling experiments have been simulated reasonably well with the complete mechanism (10 gas species, 23 surface species, 46 reactions), but work is continuing.
Technical Accomplishments (continued)

- Oxidation of ammonia is one of the many steady flow processes simulated successfully with the precious metal mechanism
 - Temperature ramped slowly from 100°C to 500°C
 - Ammonia fed to reactor with a large excess of oxygen
 - Simulates secondary reaction of initial regeneration product
 - Full range of products observed, depending on temperature

Experiment

Simulation
Technical Accomplishments (continued)

- Simulation of full storage/regeneration cycles is qualitatively accurate, but further refinement is needed
 - Artificially long cycle time is used to allow resolution of transients
 - Feed gas contains NO and excess O2 during storage phase, reductants CO and H2 during regeneration phase
 - Simulation of cycle at 400°C (shown) is largely correct
Technical accomplishments (continued)

- Simulations are consistent with hypotheses about the sequence of events occurring (spatially and temporally) during regeneration
 - Near the entrance, excess reductant converts desorbed NOx to NH3
 - As reductant is depleted, NH3 is oxidized by desorbed NOx and O2
 - After NH3 and reductant have been consumed, stored NOx and O2 desorb unhindered and exit the reactor
Technical accomplishments (continued)

- Simulations also explain the period of ammonia slip that follows the initial NOx escape
 - Partially regenerated surface does not desorb sufficient NOx and O2 to deplete the reductants and fully oxidize the NH3 formed upstream
 - Ammonia slip ceases when all NOx has been desorbed (regeneration is complete)
Technology Transfer

- A preliminary version of the precious metal mechanism was made available to CLEERS industrial members who requested it.
- The final version is in the process of being published.
- The Umicore GDI catalyst is fully formulated and commercially available, so models of its behavior have direct industrial relevance.
- The combined storage/regeneration mechanism will allow simulations of LNT behavior under various conditions and thus should aid in aftertreatment system design and optimization.
Activities for Upcoming Year

• Complete development of combined storage/regeneration mechanism describing normal cyclical operation
 – Better description of solid-phase mass transfer needed

• Develop a companion mechanism for catalyst sulfation and desulfation
 – Needed to simulate degradation in LNT performance during normal operation and restoration of activity during desulfation
 – Account for poisoning of precious metal sites, conversion of sulfides to sulfates, and competitive sulfate/NOx storage

• Augment mechanism with reactions accounting for reductants other than CO and H2
 – Unburned and/or partially burned hydrocarbons may play a role, depending on mode of operation
Summary

- A fundamental understanding of LNT chemistry is needed to realize the full potential of this aftertreatment technology, which could lead to greater use of fuel-efficient lean-burn engines.
- An elementary reaction mechanism has been developed by comparing the results of Chemkin-based reactor simulations to experimental data provided by ORNL.
- Agreement with a wide range of steady flow and full cycle experiments is generally good, although refinements continue.
- The completed regeneration mechanism for this commercial catalyst has been made available to the industrial community.
- The mechanism is to be augmented to account for sulfation and desulfation processes as well as alternative reductants.
Publications and Presentations

This work is supported by:

Gurpreet Singh, Team Leader
Advanced Combustion Engine Technologies
Office of Vehicle Technologies